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Last time

Unbalanced ANOVA

Restricted randomization and blocking to induce control and reduce
confounding

Repeated measures ANOVA
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Today

Repeated measures ANOVA

Analysis of Covariance (ANCOVA)
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Repeated measures

When you have more than one observation on the same sample unit,
the experiment is said to contain repeated measures.

Ubiquitous in the health and social sciences.

Classic example is measuring the effect of an intervention pre and
post application. In this case, average treatment effect can be
quantified with a (paired) t-statistic.

But you may want to measure the effect of an intervention at many
points in time over the same sample units. This suggests an ANOVA
framework.

A repeated measures design is a special case of a nested design.

It is also a special case of a blocked design.
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Assumptions of repeated measures ANOVA

The assumptions for a repeated measures ANOVA are a bit different:

Independence of observations between subjects/factors only
(obviously, observations within subjects are related).

Equality of variances (homoskedasticity) over all levels of between
subject factors.

Normality assumption over all levels of between subject factors.

Equality of variances and normality assumption within factors when
more than two repeated measurements (time points): variances of the
differences between all adjacent pairs of repeated measurements must
be the same over all adjacent time points, and variances of the
differences between all other possible pairs of repeated measurements
must be the same over all possible pairs of time points, in addition to
multivariate normality. This assumption is called sphericity.
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Repeated measures ANOVA: example

Assess student confidence in math abilities after participating in two
weekend workshops.

Students complete a questionaire to assess their math confidence
levels before the workshops, after the first workshop, and after the
second workshop. Confidence is measured on a 20-point scale, derived
from a composite score from the questionaire.

8 students have not taken a math course in the past 5 years (L
group), 8 students have taken a math course within the past 5 years,
but not within the last year (M group), and 8 students have taken a
math course within the last year (H group).
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Repeated measures ANOVA: example

RM-ANOVA shows evidence of an overall (marginal) treatment effect,
and for a differential effect of treatment with Group.

Note: marginal Group effect just reflects baseline differences between
L/M/H Groups.
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Repeated measures ANOVA: example

Examining interaction plot shows where differential effect of
treatment is present. Possible explanations for differential effect?
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Repeated measures ANOVA: example

Post-hocs on marginal effect of treatment show strong evidence for
overall intervention effect and for effect of second workshop, but only
moderate evidence for effect of first workshop.

No evidence of violation of sphericity assumption.
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Fundamental problems with repeated measures ANOVA

Repeated measures ANOVA has been around for a long time (100+ years);
thus, the methodology is ingrained in many fields. However, it suffers from
several critical flaws:

Repeated measures designs do not account for sequence or carryover
effects.

Repeated measures designs do not allow for patient drop-out.

Repeated measures designs require the sphericity assumptions which
is often extremely suspect in practice; moreover, RM-ANOVA is
highly sensitive to violations of sphericity.
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A few words on mixed effects models

While we do not have the time to treat these models properly, there is one
important idea that we should note now.

Recall we have only talked about “fixed effects” ANOVAs.

An explanatory factor is called a fixed effect if its levels are either (1)
fixed by the experimenter, or (2) exhausted by the experimental
design.

Alternatively, an explanatory factor is called a random effect if its
levels are not fixed by the experimenter, but rather are drawn
randomly from a population of all possible factor levels.

Mixed effects models are simply statistical models (ANOVA or
otherwise) that consider both fixed and random effects simultaneously.
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A few words on mixed effects models

The classic example of a random effect is a randomly sampled subject
in a repeated measures design. Each sample’s response at baseline
can be considered a random effect.

In this way, mixed effects modelling allows one to study the time
effect relative to each individual baseline, which is assumed random.

It turns out that this is a much more reasonable way to model
repeated measures data: more flexible and more robust.

Treating effects as random in an ANOVA framework changes the
F-statistic one should use to test for the presence of a nonzero effect
on the random term (no easy way to do this in Jamovi, but SPSS will
handle such a model).
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A few words on mixed effects models

Mixed effects modelling can fix all the problems with RM-ANOVA (by
proposing a different model and set of assumptions altogether).

Mixed effects models allow you to explicitly study, quantify, and
model dependent or confounded data in many different ways, e.g.

Accumulation effects of treatment in time or space.

Dispersion effects of treatment in time or space.

Other kinds of non-stationary treatment effects in time or space.

Drop-out effects.

Nonresponse bias.

Measurement error.

Preferential sampling.

And much, much more!
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Practical repeated measures

So if RM-ANOVA should be avoided, and we aren’t learning about
mixed effects modelling, then what should you do when you want to
analyze repeated measures data?

The problems with RM-ANOVA only really appear when we have
more than two time points in our dataset.

My advice: If you have more than two time points, just run multiple
RM-ANOVAs on every pair of time points that you care about.

Typical setup:

Measurements at time points 1, 2, and 3.

Care about possible changes in response from time point 1 to 2, and
then from 2 to 3 (might also care about 1 to 3).

So perform two RM-ANOVAs on the two pairs of time points (1 to 2,
and 2 to 3) and then adjust for the inflated Type I error rate
(e.g. Bonferroni).
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Repeated measures ANOVA: example

Performing two RM-ANOVAs on each pair of time points yields same
information as original analysis, without having to rely on the validity
of the sphericity assumption.

However, p-values not all the same (less power here).

A bit of a multiple testing issue is present (though dependency of
outcomes mitigates this concern somewhat).
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Analysis of Covariance (ANCOVA)

ANOVA relates a continuous response of interest to a set of
categorical explanatory variables.

Analysis of Covariance (ANCOVA) extends the ANOVA framework to
allow control for continuous explanatory variables as well.

This is NOT the same thing as regression. In particular, ANCOVA
does not allow you to estimate the effect of a continuous explanatory
variable on a continuous response; it only removes the variation
explained by the continuous explanatory variable, thus:

reducing residual error.

allowing better estimates of the categorical marginal and interaction
effects of interest.

In an ANCOVA, the continuous explanatory variable is never of
interest. It is merely a nuisance variable to be eliminated.
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Analysis of Covariance (ANCOVA) rationale

Let Yi be the response of interest for sample unit i . Let Xi be the
covariate (continuous explanatory variable) for sample unit i

First, find the “best fitting” line through the points pXi ,Yi q:
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Analysis of Covariance (ANCOVA) rationale

There are many ways to define “best fitting,” but here we take the
classical definition; i.e. the ordinary least squares (OLS) fitted line
obtained by minimizing the sum of the squared errors.

That is, if we write
Yi “ β0 ` β1Xi ` εi ,

for some random error ε „ Np0, σ2q, we can find numbers pβ0 for β0
and pβ1 for β1 that minimize

n
ÿ

i“1

ε2i “
n

ÿ

i“1

pYi ´ β0 ´ β1Xi q
2

This is a simple calculus exercise and yields the OLS estimators:

pβ0 “ sY ´ pβ1 sX , pβ1 “
SXY
S2
X
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Analysis of Covariance (ANCOVA) rationale

Now, with the “best fitting” (OLS regression) line estimated, we can
plug in the OLS estimators and rearrange the equation:

Yi “
pβ0 ` pβ1Xi ` εi

“ sY ´ pβ1 sX ` pβ1Xi ` εi

“ sY ` pβ1pXi ´
sX q ` εi

Thus,
Yi ´

pβ1pXi ´
sX q “ sY ` εi

Denote the lefthand side of this equation by

Y adj
i :“ Yi ´

pβ1pXi ´
sX q

This is our response of interest, Y , adjusted for the effect of the
covariate X .
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Analysis of Covariance (ANCOVA) rationale

So, we now have a transformed version of Y that we can fit ANOVA
models to. For example, if W is some categorical explanatory factor
of interest for Y , we can now estimate the ANOVA model:

Y adj “ µ` τW ` δ

This will give us information about the effect of W on Y adjusted for
the effect of X .

The classic (and most common) application: estimating the effect of
some intervention Y adjusting for baseline X over groups of W .

Note: we can adjust for multiple covariates by using the same “best
fit” adjustment procedure for each covariate.
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RM-ANOVA vs. ANCOVA

Suppose we have a pre-test and post-test measurement on 21 people
subjected to one of three experimental treatments (a nested design).

Performing a RM-ANOVA, we could address the question of whether
or not the average change in pre and post-test measurement differs
among the three experimental groups.

Or, treating the pre-test measurement as a nuisance variable, we can
perform an ANCOVA to address the question of whether or not the
average post-test measurement, adjusted for baseline differences in
pre-test measurements, differs among the three experimental groups.

ANCOVA quantifies differences of post-test means between groups
(adjusted for baseline); RM-ANOVA quantifies change from pre-test
to post-test between groups.
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Assumptions of ANCOVA

The usual ANOVA assumptions (independence, homoskedasticity,
normality of residuals)

Relationship between response and covariate is linear.

All regression slopes between the covariate and the response are equal
across each level of the explanatory factor(s).

In an RM-ANCOVA framework, the regression slopes are also equal
over each repeated measurement (virtually never satisfied in practice).

Independence of the covariate and the other explanatory factors
(often suspect).
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ANCOVA Example 1 (covariate adjusting for baseline)

Suppose we have a pre-test and post-test measurement on 21 people
subjected to one of three experimental treatments (a nested design).

We check if the pre-test baseline is linearly related to the post-test
measurement:
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ANCOVA Example 1

There’s somewhat of a linear relationship between our response of
interest (post-test measurement) and nuisance covariate (pre-test
measurement), so an ANCOVA approach may be reasonable.

We estimate the improper ANCOVA model:

Ypost “ µ` τgroups ` β ¨ Ypre ` α ¨ τgroups ¨ YPre ` δ

Note: one of the assumptions of the ANCOVA rationale is that
α “ 0. That is, all regression slopes between the covariate and the
response are equal across all levels of the explanatory factor.

By specifying the above model, we can explicitly test this assumption.

However, the improper model is NOT the model you should use
to report your ANCOVA results.
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ANCOVA Example 1

In Jamovi:

First create a column of data for each of: response of interest (Ypost),
nuisance covariate (Ypre), explanatory factor(s) (groups).

Then select the ‘ANCOVA’ option from the ‘ANOVA’ analysis tab.

Assign your dependent variable (response), fixed factors (explanatory
factors), and covariates.

In the ’Model’ dialogue box, make sure a full two-way model is
specified (with interaction).
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ANCOVA Example 1

Notice: no significant effect of ‘Groups ˆ Pre-test’; so no evidence
against ANCOVA assumption of equal regression slopes (α “ 0).

Not much variation explained by baseline differences (‘Pre’ sum of
squares).

No evidence of a group effect on the post-test measurements (this is
our main effect of interest).
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ANCOVA Example 1

Estimates of the average post-treatment measurement between
experimental groups: Group I average = 29.493 Group II average =
29.803, Group III average = 29.165.
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ANCOVA Example 1

Can plot regression lines by group easily with Jamovi’s ‘Exploration’
Ñ ‘Scatterplot’ option:

Note: just because “best fit” lines cross, does not mean that we have
evidence that they are different: there is a lot of uncertainty in the
“best fit” estimates!

Ed Kroc (UBC) EPSE 592 March 12, 2020 28 / 41



ANCOVA Example 1

The α “ 0 assumption seems reasonable for our data.

Thus, we can estimate the proper ANCOVA model:

Ypost “ µ` τgroups ` β ¨ Ypre ` δ
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ANCOVA Example 1

Estimates of the average post-treatment measurement between
experimental groups: Group I average = 29.533, Group II average =
29.802, Group III average = 29.187. These are the effect sizes we
should report.

Ed Kroc (UBC) EPSE 592 March 12, 2020 30 / 41



ANCOVA Example 1

Now suppose we ran a RM-ANOVA on these data instead:

Definite evidence for a change in time.
No significant group effect, marginally or in time.
Note: Post-hoc test on interaction would provide same info as the
ANCOVA.
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ANCOVA Example 2 (covariate adjusting for baseline)

Examine the difference between two exercise regimens vs. a control
(no special training) on 21 people equally and randomly assigned to
one of the three experimental groups. Our data look like:

Group Subject Measurement Response

I 1 Pre 26.25

I 1 Post 29.50

I 2 Pre 24.33

I 2 Post 27.62
...

...
...

Will use ANCOVA to see if there are differences in the post-treatment
measurements, controlling for baseline differences.
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ANCOVA Example 2

We will treat the pre-test measurement as our baseline measurement
of physical fitness for each individual.
In this case, baseline should be strongly correlated with the post-test
measurement, which we can see explicitly if we graph ‘Pre’ vs. ‘Post’:
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ANCOVA Example 2

Due to this strong linear relationship between our response of interest
(post-test measurement) and the nuisance covariate (pre-test
measurement), an ANCOVA approach may be reasonable.

We estimate the improper ANCOVA model:

Ypost “ µ` τgroups ` β ¨ Ypre ` α ¨ τgroups ¨ YPre ` δ

Note: we will again test if the ANCOVA assumption α “ 0 is
reasonable.
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ANCOVA Example 2

Lots of variation explained by baseline differences (‘Pre’ sum of
squares).

Also have evidence of a group effect on the post-test measurements
(this is our main effect of interest).

Also have weak evidence of a significant effect of ‘Groups ˆ Pre-test’;
so the ANCOVA assumption of equal regression slopes (α “ 0) may
be untenable.
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ANCOVA Example 2

Estimates of the average post-treatment measurement between
experimental groups: Group I average = 29.159, Group II average =
27.324, Group III average = 26.484.
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ANCOVA Example 2

“Best fit” lines for post-test (response) vs. pre-test (covariate)
between groups:
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ANCOVA Example 2

We had evidence of possible heterogeneity of regression slopes for
post-test (response) vs. pre-test (covariate) between groups:
F p2, 15q “ 5.631, p-value = 0.015.

Notice in the plot: these lines look very close to parallel! But because
the (Pre,Post) data (by group) fall so close to each line, we have little
residual variability. This is reflected in the very small SS(residuals) in
the ANCOVA.

Thus, we have high power to detect small differences between the
slopes. The question now is are these obviously small differences
meaningful enough for us to distrust the ANCOVA?

This is a judgment call in general, but here, the slopes are so close
that the results of the ANCOVA should not be greatly affected by
assuming α “ 0.
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ANCOVA Example 2

We can verify this by comparing our results with the proper ANCOVA
model:

Ypost “ µ` τgroups ` β ¨ Ypre ` δ

Still have significant Groups and Baseline effects.
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ANCOVA Example 2

Estimates of the average post-treatment measurement between
experimental groups: Group I average = 29.116, Group II average =
27.323, Group III average = 26.450. Again, these are the results
one should report.
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ANCOVA Example 2
Compare to a RM-ANOVA:

Definite evidence for a marginal change in time.
Significant group interaction with time, but no marginal group effect.
Again, note that post hoc tests on interaction term would provide
same info as ANCOVA.
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