
EPSE 592: Design & Analysis of Experiments

Ed Kroc

University of British Columbia

ed.kroc@ubc.ca

March 5, 2020

Ed Kroc (UBC) EPSE 592 March 5, 2020 1 / 44



Statistical power

The concept of statistical power is crucial for both designing a study
and for interpreting a study that has already been conducted.

Power is (informally) defined as the ability to detect non-zero effects
(true positives)

The power, or sensitivity, of a test is defined as

Prpp ´ value ă α | H0 falseq “ 1´ β,

where α is the significance level set by the researcher/journal and
used to declare p-values “significant” or not under the traditional
threshold approach.

Good studies will strive to have 1´ β ě 0.80. Most studies will have
much lower power.
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Statistical power
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data inconsistent
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Type I error
false positive

Correct decision
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data consistent
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Pr(data inconsistent
with H0 | ¨ ¨ ¨ )
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Statistical power

Statistical power is a function of many things:

Sample size (increasing sample size automatically increases power)

Population variability (less variation means more power)

Overall distribution of random phenomenon of interest (average effects
in clustered or multi-modal distributions can be difficult to detect)

Type I error rate, α (increasing α automatically increases power)

True, unobserved effect size (bigger effect sizes are easier to find)

Type of statistical test/procedure used (e.g. nonparametric or robust
procedures can be more powerful when data are non-normal)

Measurement error (noisier measurements produce more variability, so
lead to less power)
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Statistical power

Remember:

If you design a study that has a poor chance of detecting what you
are trying to find, then why bother doing the study at all?

If your study has low power, but you end up finding a significant
non-zero effect anyway, it is likely that you are making a type I error.

If your study has low power but you end up finding a significant
non-zero effect anyway, your effect estimates will be overinflated,
sometimes massively (Type M error).

If your study has low power but you end up finding a significant
non-zero effect anyway, your effect estimates are likely to be in the
wrong direction (Type S error).
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Examples of study situations with different powers
Note: “small” and “large” are relative terms

Low power

Small true effect size, or small sample size, and/or large pop. variance

Very hard to distinguish the null distribution (red) from reality (blue)
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Examples of study situations with different powers
Note: “small” and “large” are relative terms

High power

Big true effect size, or large sample size, and/or small pop. variance

Able to distinguish the null distribution (red) from reality (blue)
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Effects of low power on interpretation of analytical output

Low power can come from many different sources. In practice, the three
most common are:

Small sample sizes (overall, or within groups).

Large variability (overall, or within groups, or due to noisy
measurements).

Small true effect sizes.

The first two sources are easy to see. The last (small true effect sizes) is
difficult and subjective, but absolutely crucial.
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Effects of low power on interpretation of analytical output

True effect sizes are unobserved, but crucial to interpretation:

We never actually know the true effect size (if we did, we wouldn’t
have to perform a study to estimate it).

A plausible true effect size depends on the prior believability of a
particular alternative hypothesis.

In social science, many of our effects of interest will be small,
especially when compared to the effects of other variables of little or
no interest.

Evaluating the power of a study retrospectively requires an informed
assessment of how plausible you would find certain effect sizes.

Note: some applied practitioners and software (e.g. SPSS) will talk
about “retrospective power” or “post hoc power analysis”; they do
not mean what we are talking about (usually, they mean gibberish).
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Unbalanced ANOVA

A study design or analysis is called unbalanced when sample sizes are not
equal across all identified groups/subgroups (i.e. across all factor levels of
the categorical explanatory variable(s)). Unbalanced designs suffer from
several problems:

Harder to perform/assess model diagnostics.

Harder to estimate within and between subject variability.

Lower power to detect non-zero effects than balanced designs
(usually, power is a function of the smallest group sample size).

Lack of balance may induce a confounding effect (see following
examples)

The more unbalanced the groups, the worse these problems become.
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Unbalanced ANOVA

Recall Anxiety vs. Education and Sex two-way ANOVA:

This was a fully balanced, 3ˆ2 factorial design:

total sample size = 18

3 Education levels, sample sizes = 18/3 = 6

2 Sex levels, sample sizes = 18/2 = 9

3ˆ2 = 6 EducationˆSex levels, sample sizes = 18/6 = 3
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Unbalanced ANOVA

But suppose three of our male respondents refused to answer (maybe
because they were too stressed out), so that now:

total sample size = 15

3 Education levels, sample sizes = 6,5,4

2 Sex levels, sample sizes = 9,6

3ˆ2 = 6 EducationˆSex levels, sample sizes = 3,3,3,2,3,1

This is now an unbalanced design:
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Unbalanced ANOVA

Alternatively, suppose two of our Master’s and 2 of our PhD respondents
refused to answer (maybe because they were too stressed out), so that
now:

total sample size = 14

3 Education levels, sample sizes = 6,4,4

2 Sex levels, sample sizes = 7,7

3ˆ2 = 6 EducationˆSex levels, sample sizes = 3,3,2,2,2,2

This is now an unbalanced design:
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Complete randomization is not always a good thing

Recall HW1, Q1:

27 participants randomly assigned to one of three treatment groups:
low, medium, or high social media usage (9 from each baseline)

Did not assume any restrictions on randomization

So we could have gotten unlucky with our randomization and gotten
a study design like this:

Social media
assignment

L M H

Social media
baseline use

L M H
L M H
L M H
...

...
...
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Complete randomization is not always a good thing

But this would be a terrible design!

Effect of treatment (our main interest) cannot be separated from
baseline effect (confounding)

Social media
assignment

L M H

Social media
baseline use

L M H
L M H
L M H
...

...
...

Instead, we should be able to design a better study by restricting the
random assignment mechanism carefully.
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Restricted randomization and blocking

If you are designing an experiment, you should be smart about how you
assign your experimental treatments. You want to:

Maximize information about the treatment effect

Minimize confounding with other variables

Ensure no sample unit is going to waste (i.e. maximize power)

Remember:

Experimental manipulation is the only sure way to tease out causal
relationships between variables

Experiments are costly (money and time)

If you are fortunate enough to be running an experiment, you should pick
a design that is efficient and effective.
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Restricted randomization and blocking

Consider the following example: we have money to run a study to test the
effects of four pain-relieving drugs on first-time liver cancer patients who
have undergone 2 months of radiation therapy. Patients come from one of
four hospitals, but all facilities and therapy regiments are comparable.
Response of interest is a pain-index compiled from a suite of quantitative
and qualitative patient outcomes.

We only have money for 16 sample units

4 hospitals ˆ 4 drug treatments

So we do not have enough data to estimate an interaction effect (3 df
+ 3 df + 9 df would mean 0 df leftover for residuals!)

Thus, the only two-way model we can estimate is:

Y “ µ` τgroup ` τdrug ` ε
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Restricted randomization and blocking

We (naively) randomize drug assignment (4ˆ 4) and get the following
design:

Hospital

I II III IV

Drug
treatment

A B C D
A B C D
A B C D
A B C D

This study design would completely confound patient group with drug
treatment. No way to separate effect of drug from baseline effects of
patient group!

Ed Kroc (UBC) EPSE 592 March 5, 2020 18 / 44



Restricted randomization and blocking

But that was a very special (and very unlucky) case. We could
randomize treatment assignment again and find:

Hospital

I II III IV

Drug
treatment

C A C A
A A D D
D B B B
D C B C

Now we run the experiment:
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Restricted randomization and blocking

Response: pain-index outcomes on a 1-20 point composite scale

Hospital

I II III IV

Drug
treatment

C(12) A(14) C(10) A(13)
A(17) A(13) D(11) D(9)
D(13) B(14) B(14) B(8)
D(11) C(12) B(13) C(9)
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Restricted randomization and blocking

However, the previous design was very inefficient:

Drug A was never used in Hospital III

Drug D was never used in Hospital II

Drug B was never used in Hospital I

Variation in Drug A may be disproportionally affected by a Hospital II
effect (confounding)

Similar for Drug D and Hospital I, and Drug B and Hospital III
(confounding)

A much better experimental design would remove this possible confounding
by restricting the random drug assignment within each hospital. This
process is called blocking and the hospitals are called experimental blocks.
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Restricted randomization and blocking

Randomized block design for pain-relieving drug experiment:

Hospital

I II III IV

Drug
treatment

B(14) D(11) A(13) C(9)
C(12) C(12) B(13) D(9)
A(17) B(14) D(11) B(8)
D(13) A(14) C(10) A(13)

Notice how this design maximizes experimental efficiency:

Each drug is applied the same number of times (once) at each
hospital

All hospitals (blocks) receive all treatments

No confounding between drug and hospital effects; the SSs capture
only the marginal variations in the effects
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Restricted randomization and blocking

Looking at the ANOVA output:

The SSs are accurate (unconfounded) estimates of marginal effects

Residual variation has been reduced since all data now efficiently
measure drug and hospital effects (no confounding)

Power to detect non-zero effects has increased due to more efficient
design
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Restricted randomization and blocking (Latin squares)

There are still some potential inefficencies in our randomized block design
if we have extra information on patients we would like to account for:

Hospital

I II III IV

Drug
treatment

B D A C
C C B D
A B D B
D A C A

Suppose that patients in row 1 have the least aggressive cancers, while
patients in row 4 have the most aggressive cancers (rows 2 and 3 contain
patients with moderately aggressive cancers).

Now “severity of cancer” is a potential confounding variable

But no patients from the high severity group ever receive Drug B.
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Restricted randomization and blocking (Latin squares)

To eliminate possible confounding due to severity of cancer, we can block
again; i.e. block over Hospitals and block over Severities

Hospital

I II III IV

Severity 1 C(12) D(11) A(13) B(8)
Severity 2 B(14) C(12) D(11) A(13)
Severity 3 A(17) B(14) C(10) D(9)
Severity 4 D(13) A(14) B(13) C(9)

Now, each treatment appears once and only once in each row and in
each column

This experimental design is called a Latin square or orthogonal array

Interestingly, there is still randomization here; i.e. there are many
different ways to construct Latin squares of various dimensions (just
how many is a famous open problem in theoretical mathematics)
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Restricted randomization and blocking (Latin squares)

There are 576 different Latin squares of order 4 (i.e. 4 treatments ˆ 4
hospitals ˆ 4 severities). For example:
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Restricted randomization and blocking (Latin squares)

The SSs are still accurate for Hospital and Drug because our design
still separates (unconfounds) those effects from drug assignment

Moreover, we have eliminated any potential confounding due to
Severity with our design; so all SSs are unconfounded

Residual variation has been further reduced

Power hasn’t changed much (but that’s okay)
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Restricted randomization and blocking (Latin squares)

But there’s no need to stop at 3 effects!

Maybe the patients are coming from one of four different Doctors.
This could create a 4 Drug ˆ 4 Hospital ˆ 4 Severity ˆ 4 Doctor
blocking experiment.

Such a design is called a Graeco-Latin square.

There are also similar designs for unbalanced or incomplete designs
(say, if we were only testing 3 Drugs in 4 Hospitals over 4 Severities);
this is called a Youden square.

And lots, lots more!

Moral: even if you can only afford a very small sample, you can still
design very efficient experiments. Seek out professional advice if unsure
of the options.
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Repeated measures

When you have more than one observation on the same sample unit,
the experiment is said to contain repeated measures.

Ubiquitous in the health and social sciences.

Classic example is measuring the effect of an intervention pre and
post application. In this case, average treatment effect can be
quantified with a (paired) t-statistic.

But you may want to measure the effect of an intervention at many
points in time over the same sample units. This suggests an ANOVA
framework.

A repeated measures design is a special case of a nested design.

It is also a special case of a blocked design.
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Repeated measures ANOVA

Consider the following example quantifying the physical strength of seven
subjects before and after a specified 2 month fitness regimen.

Subjects Pretest Posttest

1 100 115

2 110 125

3 90 105

4 110 130

5 125 140

6 130 140

7 105 125

Could quantify and test the average treatment (fitness regimen) effect
using a paired t-test:
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Repeated measures ANOVA

Alternatively, we can think of this experiment as a two-way randomized
complete block design where measurements (pre or post) are blocked
within subjects; i.e.

Each block (subject) gets assigned both “treatments” (pre or post)
exactly once

There are then 2ˆ 7 different factor levels, and each factor level has
only one observation.

In this framework, it may be easier to think of the data as follows:

Subjects Measurement Response

1 Pre 100

1 Post 115

2 Pre 110

2 Post 125
...

...
...
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Repeated measures ANOVA

Just as in the two-way blocked design from before, the ANOVA model we
can estimate is:

Y “ µ` τsubject ` τmeasurement ` ε

Notice, again, there is no way to estimate an interaction term. Why?

Only one observation per 2ˆ 7 factor levels; so no variation at the
interaction level to explain.

Equivalently, all degrees of freedom would be used up, so none
leftover for residuals (so no F-tests!): 1 df + 6 df + 6 df = 13 df

This model is sometimes written as follows:

Y “ µ` τs ` τmpsq ` ε

This form has the advantage of explicitly signaling that the measurements
(m) are nested within subjects (s).
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Repeated measures ANOVA

Running the ANOVA proceeds exactly as usual. The repeated measures
design is now built into the ANOVA model we specified.

Compare with paired t-test from before:

Note that p´12.05q2 “ 145.20; so our t-test is the same as the F -test in
this two group (pre vs. post test) [This is true in general: t-tests are
equivalent to F -tests on two groups].
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Repeated measures ANOVA in Jamovi

In Jamovi, there is a special “Repeated Measures ANOVA” option
that is convenient to use.
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Repeated measures ANOVA in Jamovi

Note the special terminology, very common to repeated measures analyses:

The effect attributable to each sample subject is typically referred to
as the “between subject residuals”.

Think: we expect there to be differences between sample subjects, but
we don’t really care about these differences; they are essentially
baseline differences.

Unfortunate terminology to call them “residual effects,” but very
common (sadly).

The overall ANOVA model residuals (i.e. the leftover variation after
accounting for the explanatory variables in the ANOVA model) are
typically referred to as the “within subject residuals”.

Think: we already know that ANOVA model residuals are unique to
each observation, and here the observations are “within subject.”
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Assumptions of repeated measures ANOVA

The assumptions for a repeated measures ANOVA are a bit different:

Independence of observations between subjects/factors only
(obviously, observations within subjects are related).

Equality of variances (homoskedasticity) over all levels of between
subject factors.

Normality assumption over all levels of between subject factors.

Equality of variances and normality assumption within factors when
more than two repeated measurements (time points): variances of the
differences between all adjacent pairs of repeated measurements must
be the same over all adjacent time points, and variances of the
differences between all other possible pairs of repeated measurements
must be the same over all possible pairs of time points, in addition to
multivariate normality. This assumption is called sphericity.
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Checking assumptions of repeated measures ANOVA

In Jamovi:

Equality of variances checked by Levene’s test.

Normality is not separately assessed (annoyingly). One easy way to
check normality of between subject factor levels is to fit a bunch of
ordinary ANOVAs on the response at each time point separately.
Ignore the ANOVA output, but examine the QQ-plot.

Sphericity assumption checked by Mauchly’s test and other statistics
(only relevant for more than two time points).

Sphericity is a major practical problem of implementation (when more
than two time points in data).
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Repeated measures ANOVA, example

Suppose we have 3 technicians learning how to operate a new piece of
machinery. 3 supervisors evaluate their performance at 5 different time
points over a one hour period (these evaluations are treated as
replications). We thus have a 3 technician ˆ 3 supervisor experiment on 5
repeated points in time. Some sample data are as follows:
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Repeated measures ANOVA, example

Select “Repeated Measures ANOVA” in Jamovi and specify the repeated
measures columns and the between subjects variables:
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Repeated measures ANOVA, example

Specify the model that you want fitted:
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Repeated measures ANOVA, example

The model Jamovi then fits is:

Y “ µ` τtime ` τsup ` τtech ` τtimeˆsup ` τtimeˆtech ` τsupˆtech ` ε

In repeated measures ANOVA, we are usually most interested in the
‘time’ effect.

Here, we probably are not interested in the ‘technician’ effect, since
we expect there to be a natural baseline difference between
technicians.

We may be interested in the ‘supervisor’ effect, as it could suggest
whether or not supervisors are evaluating technicians consistently.

The time interactions may be of interest.

If we specify an interaction between ’supervisor’ and ’technician’, then
Jamovi will use up all our degrees of freedom creating a three-way
interaction (not mathematically necessary, but default for Jamovi).
Ed Kroc (UBC) EPSE 592 March 5, 2020 41 / 44



Repeated measures ANOVA, example

Examine the output:

Unsurprisingly, the small sample size leads to low power

No noticeable time effect
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Repeated measures ANOVA, example

Examine an interaction plot:
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Repeated measures ANOVA, example

Try to assess the assumptions:

Too little data for meaningful tests!

Can still try to assess normality of between subjects factor levels, but
so little data will make the assessment difficult.

In practice, when there are too few data to assess assumptions,
nonparametric options are preferable.
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