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Today

“Standardized” measures of effect size

Cohen’s d (pairwise differences, t-tests)
η2 and partial η2

(partial) ω2

Statistical power, a closer look

Case study: Durante et al. 2013
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Measures of effect size

Always important to report effect sizes for any comparison, statistical
test, or model. For example, raw effect sizes:

Observed difference in two sample means (t-test)

Two sample variances or standard deviations (F-test)

Sums of squares (main effects, interactions) in ANOVA

Regression coefficients in regressions

Also need to report an estimate of sample variability (e.g. standard
error, confidence interval, residual sum of squares)

Cannot properly assess the meaning of an experiment/study without
at least three things:

Observed effect size

Estimate of variability

Sample size(s)
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“Standardized” measures of effect size

Many statistics have been developed to try to communicate these
three pieces of information in a single number.

Unfortunately, this has the effect of obscuring easily understandable
statistics (e.g. means, variances, counts) into obtuse derivative
quantities (e.g. η2, ω2).

Worst of all, since these derivative quantities are not immediately
interpretable, people have developed rules of thumb for interpretation
that now take the place of critical thought.

Extremely common in social science literature (some health and
natural sciences as well)
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Cohen’s d

Cohen’s d is the ordinary standardized effect size for the average
difference between two groups:

d “
ĎX1 ´ ĎX2

s
,

where s is an estimate of the overall standard deviation of the two
groups.

This is not an inherently bad statistic; if scales are different,
standardizing can aide interpretation.

However, Cohen’s rule of thumb has become virtual gospel among
applied practitioners. He advises:

d « 0.2 means small effect size
d « 0.5 means medium effect size
d « 0.8 means large effect size
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Cohen’s d

NEVER interpret your data this way, at least, not without thinking
hard if the interpretation is appropriate.

First of all, it communicates nothing about sample size

Secondly, the “small, medium, large” advice of Cohen only makes
sense when all your data are normally distributed. Even mild
deviations from normality can destroy these rules of thumb.

Cohen’s d is commonly reported with t-tests and post hoc pairwise
comparisons from an ANOVA

Note: Jamovi (and some other software) refer to Cohen’s d as simply
“effect size” - be careful with the terminology: it is only accurate
to talk about a “raw effect size” (e.g. mean difference) and a
“standardized effect size” (e.g. Cohen’s d).
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Eta-squared, η2

η2 is another measure of “effect size”: measures how much variation
is explained by one factor (or one interaction) in an ANOVA:

η2 “
SSeffect

SStotal

Again, this is not an inherently bad statistic; we have been informally
calculating it every time we look at an ANOVA table.

However, the “proportion of total variance explained” interpretation
only holds when:

group sizes are all equal (i.e. balanced ANOVAs)

there are no repeated measures (will study these ANOVAs soon)
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Eta-squared, η2

η2 can be useful for heuristics, but it can also hide a lot of important
info:

Again, it communicates nothing about sample size.

It can hide the fact that your data don’t explain much variation at all
(e.g. SStotal is small).

Again, the (intuitive) interpretation breaks down for non-normal data.

η2 is always a biased estimator of the true variance explained.

Note: η2 for ANOVAs is the direct analogue of R2 for regression
models.

Again, there are ill-advised rules of thumb for interpretation (0.01 «
small, 0.06 « medium, 0.14 « large): NEVER use these.

Ed Kroc (UBC) EPSE 592 February 27, 2020 8 / 34



Partial eta-squared, η2
partial

η2partial is a measure of how much variation is explained by one factor
(or one interaction) relative to the residual variation:

η2partial “
SSeffect

SSeffect ` SSerror

This is a bit more obscure (i.e. less intuitively interpretable) of a
statistic.

This is no longer “proportion of total variance explained” in any sense.

This is a comparison of effect variance to residual variance.

Works when group sizes are not all equal (i.e. unbalanced ANOVAs)

Works with repeated measures (will study these ANOVAs soon)
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Partial eta-squared, η2
partial

η2partial hides and obscures a lot of important info:

Again, it communicates nothing about sample size.

Again, it can hide the fact that your data don’t explain much variation
at all.

Again, the (intuitive) interpretation breaks down for non-normal data.

It will automatically increase as you add more terms to your ANOVA
model, since the leftover variation, SSerror , will automatically go down.

η2partial is again always a biased estimator of the true variance
explained.

Note: η2partial for ANOVAs is analogous to R2
partial for regression

models.

Again, there are ill-advised rules of thumb for interpretation (0.01 «
small, 0.06 « medium, 0.14 « large): NEVER use these.
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Omega-squared, ω2

(partial) ω2 is a measure of how much variation is explained by one
factor (or one interaction) relative to the total and residual variation:

ω2 “
SSeffect ´ dfeffect ¨MSerror

SStotal `MSerror

This is a lot more obscure of a statistic.

It tries to again mimic the “variance explained by the effect of
interest” paradigm.

This is a comparison of effect variation to total and residual variation.
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Omega-squared, ω2

ω2 hides and obscures a lot of important info:

Again, it communicates nothing about sample size.

Again, it can hide the fact that your data don’t explain much variation
at all.

Again, the (intuitive) interpretation breaks down for non-normal data.

ω2 is again always a biased estimator of the true variance explained,
although not as badly biased as η2 or η2partial .

Note: ω2 for ANOVAs is analogous to R2
adjusted for regression models.

Again, there are ill-advised rules of thumb for interpretation (0.01 «
small, 0.06 « medium, 0.14 « large): NEVER use these.
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Obscure effect size measures for our toy example

Recall two-way ANOVA model, with interaction, for Anxiety vs. Education
and Sex:

Yanx “ µ` τedu ` τsex ` τeduˆsex ` ε

Note that all these different “effect size” measures give no greater
insight than simply reporting the original SSs or MSs (effects and
residual); in fact, they give the same info as the F -statistics.

In fact, they simply replace easily interpretable quantities (sample
variances) by obscure decimals.

Advice: report these statistics only if required by a journal.
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Statistical power

The concept of statistical power is crucial for both designing a study
and for interpreting a study that has already been conducted.

Power is (informally) defined as the ability to detect non-zero effects
(true positives)

The power, or sensitivity, of a test is defined as

Prpp ´ value ă α | H0 falseq “ 1´ β,

where α is the significance level set by the researcher/journal and
used to declare p-values “significant” or not under the traditional
threshold approach.

Good studies will strive to have 1´ β ě 0.80. Most studies will have
much lower power.
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Statistical power

H0 true H0 false

data inconsistent
with H0

Type I error
false positive

Correct decision
true positive

data consistent
with H0

Correct decision
true negative

Type II error
false negative

Given H0 true Given H0 false

Pr(data inconsistent
with H0 | ¨ ¨ ¨ )

α p1´ βq

Pr(data consistent
with H0 | ¨ ¨ ¨ )

p1´ αq β
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Statistical power

Statistical power is a function of many things:

Sample size (increasing sample size automatically increases power)

Population variability (less variation means more power)

Overall distribution of random phenomenon of interest (average effects
in clustered or multi-modal distributions can be difficult to detect)

Type I error rate, α (increasing α automatically increases power)

True, unobserved effect size (bigger effect sizes are easier to find)

Type of statistical test/procedure used (e.g. nonparametric or robust
procedures can be more powerful when data are non-normal)

Measurement error (noisier measurements produce more variability, so
lead to less power)
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Statistical power

When planning a study, power is considered to determine how large
your sample size should be. This is called power analysis and
generally proceeds as follows:

Identify the goal of the research study (e.g. testing if a new drug or
intervention is more effective over current treatments)
Identify how you will measure the outcomes, effect size (e.g. mean
difference between two treatment groups)
Use the previous literature to reasonably estimate the variability in your
future study (e.g. similar drugs tested produced about a σ2 variation in
the response)
Decide on how you will analyze your outcomes (e.g. t-tests, ANOVAs,
regression)
Determine what effect size would be clinically important enough for
you to care (e.g. you want a new drug to be at least 20% more
effective than current treatments)
Set your type I error rate α.
Set your desired power 1´ β; i.e. your desired ability to detect the
effect of clinical importance to you.

Ed Kroc (UBC) EPSE 592 February 27, 2020 17 / 34



Statistical power

Only after all this setup can we then estimate the necessary sample
size to attain the desired power (more next time).

This is a necessary step of virtually all medical research.

This is often a necessary step to obtain funding for a proposed
project. Why?

If you design a study that has a poor chance of detecting what you are
trying to find, then why bother doing the study at all?

If your study has low power, but you end up finding a significant
non-zero effect anyway, it is likely that you are making a type I error.

Moreover, if your study has low power but you end up finding a
significant non-zero effect anyway, your effect estimates are likely
massively overinflated (Type S and Type M errors).
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Statistical power

Should always have this picture in mind when thinking about power.
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Examples of study situations with different powers
Note: “small” and “large” are relative terms

Low power
Small true effect size (0 vs. 0.5)
Small sample size and/or large variance
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Examples of study situations with different powers
Note: “small” and “large” are relative terms

Low power
Small true effect size (0 vs. 0.05)
Large sample size and/or small variance
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Examples of study situations with different powers
Note: “small” and “large” are relative terms

High power
Small true effect size (0 vs. 0.5)
Large sample size and/or small variance
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Examples of study situations with different powers
Note: “small” and “large” are relative terms

High power
Big true effect size (0 vs. 5)
Small sample size and/or large variance

Ed Kroc (UBC) EPSE 592 February 27, 2020 23 / 34



Examples of study situations with different powers
Note: “small” and “large” are relative terms

Really high power (won’t even require a statistical test of hypotheses)
Big true effect size (0 vs. 5)
Large sample size and/or small variance
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How to calculate statistical power

For simple scenarios, power can be calculated analytically (i.e. by
hand). But we rarely study simple scenarios.

Lots of software exists that claims to calculate power for you (e.g.
SPSS, G*Power); but all of it relies on the simple scenarios that rarely
apply in practice.

In particular, software nearly always relies on an assumption of
perfectly normal data; see Oscar Olvera Astivia’s blog post.

Practically, this means that sample size estimates can be grossly
distorted (very, very bad!)

Usually no software or analytical options available for complicated
study designs.

What to do?
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How to calculate statistical power

What to do? Must simulate (i.e. perform a simulation study) to
perform power analysis.

Simulation allows you to tailor a sample size estimate to the exact
specifics of any study design.

Simulation requires semi-decent programming capabilities.

If you don’t have these skills, seek a statistician’s help!
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Effects of low power on interpretation of analytical output

Low power can come from many different sources. In practice, the three
most common are:

Small sample sizes (overall, or within groups).

Large variability (overall, or within groups, or due to noisy
measurements).

Small true effect sizes.

The first two sources are easy to see. The last (small true effect sizes) is
difficult and subjective, but absolutely crucial.
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Effects of low power on interpretation of analytical output

True effect sizes are unobserved, but crucial to interpretation:

We never actually know the true effect size (if we did, we wouldn’t
have to perform a study to estimate it).

A plausible true effect size depends on the prior believability of a
particular alternative hypothesis.

In social science, many of our effects of interest will be small,
especially when compared to the effects of other variables of little or
no interest.

Evaluating the power of a study retrospectively requires an informed
assessment of how plausible you would find certain effect sizes.

Note: some applied practitioners and software (e.g. SPSS) will talk
about “retrospective power” or “post hoc power analysis”; they do
not mean what we are talking about (usually, they mean gibberish).
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Effects of low power on interpretation of analytical output

This is a graphical representation of a t-test comparison of means.

The statistical power here is 6%.

In this example, true effect size (marked by blue line) is very small.

Red regions represent values for “significant” test statistics (and so,
p-values)
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Effects of low power on interpretation of analytical output

But then finding a significant result would mean:

the estimated effect size is at least 9 times too big (Type M error)!
the estimated effect size has the wrong sign about 25% of the time
(Type S error)! [See Gelman & Carlin (2014) for more info.]
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Examples of study situations with different powers
Note: “small” and “large” are relative terms

Low power = bad estimates if significant
Small true effect size (0 vs. 0.5)
Small sample size and/or large variance
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Examples of study situations with different powers
Note: “small” and “large” are relative terms

High power = good estimates if significant
Small true effect size (0 vs. 0.5)
Large sample size and/or small variance
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Effects of low power on interpretation of analytical output

In low-powered studies:

Significant results are often meaningless.

Significant results will yield estimates that are wildly inaccurate.

Seemingly small things like measurement error, sampling variability, or
minor experimental imperfections become magnified.

Results are often entirely driven by statistical “noise”.
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Case study

Case study: Durante et al. 2013
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