EPSE 592: Design & Analysis of Experiments

Ed Kroc

University of British Columbia

ed.kroc@ubc.ca

February 13, 2020

Last Time

- Assumptions of simple fixed effects ANOVA models
- ANOVA model diagnostics
- Two-way (one factor) fixed effects ANOVA model

Today

- More on two-way (one factor) fixed effects ANOVA model
- Interpreting two-way interactions
- Generic *n*-way ANOVA models

	Female	Male
Bachelor's	6.2, 6.6, 6.2	5.8, 6.0, 5.9
Master's	6.9, 7.7, 7.9	6.2, 6.2, 6.8
PhD	6.9, 7.7, 8.3	9.0, 9.1, 8.3

Table: Anxiety data (10 point scale) vs. highest education attained cross sex.

• Two-way, fixed effect ANOVA model, with interaction:

$$Y_{anx} = \mu + \tau_{edu} + \tau_{sex} + \tau_{edu \times sex} + \varepsilon$$

• This model will allow us to separate the *marginal* effects of Education and Sex from any potential *interaction* effect of the two.

Two-way, fixed effect ANOVA model, with interaction:

$$Y_{\textit{anx}} = \mu + \tau_{\textit{edu}} + \tau_{\textit{sex}} + \tau_{\textit{edu} imes \textit{sex}} + \varepsilon$$

ANOVA

	Sum of Squares	df	Mean Square	F	р
Education	12.754	2	6.377	28.842	<.001
Sex	0.109	1	0.109	0.492	0.496
Education * Sex	3.694	2	1.847	8.354	0.005
Residuals	2.653	12	0.221		

- Can uncover marginal and interaction effects *simultaneously*.
- Notice: same main effect SSs as in one-way ANOVAs, and as in two-way ANOVA without interaction (consult notes from previous class).

Two-way, fixed effect ANOVA model, with interaction:

$$Y_{\textit{anx}} = \mu + au_{\textit{edu}} + au_{\textit{sex}} + au_{\textit{edu} imes \textit{sex}} + arepsilon$$

ANOVA

	Sum of Squares	df	Mean Square	F	р
Education	12.754	2	6.377	28.842	<.001
Sex	0.109	1	0.109	0.492	0.496
Education * Sex	3.694	2	1.847	8.354	0.005
Residuals	2.653	12	0.221		

• Again, each F-statistic corresponds to a different test of hypothesis:

•
$$F_{edu} = MS_{edu}/MS_{res}$$
 tests $H_0: \tau_{edu} = 0$
• $F_{eau} = MS_{eau}/MS_{res}$ tests $H_0: \tau_{eau} = 0$

• $F_{edu \times sex} = MS_{edu \times sex}/MS_{res}$ tests $H_0: \tau_{edu \times sex} = 0$

- Actually though, for ANOVAs with at least two factors, there is more than one way to partition a total sum of squares and to define a reasonable *F*-test on marginal and interaction effects.
- We will not get into the math behind this.
- Generally, always default to the Type 3 sum of squares (Jamovi defaults to this).
 - Type 1: some nice mathematical properties, but order of variables matters (bad)
 - Type 2: more powerful when interactions not present (unlikely in practice)
 - Type 3: good mathematical properties
 - Type 4: preferable in certain types of experimental designs

Notice the apparent interaction effect: both sexes report higher anxiety levels with higher education, but the *rate* of increase seems to be higher for males.

- Plotting the *group means* and connecting them with a line for each level of one category produces an "interaction plot."
- Very useful for visualizing interaction effects.
- But note: whether or not the lines cross is irrelevant! We are only assessing if the apparent *trends* are dissimilar.

- To make the previous interaction plot in Jamovi:
 - Use the "Estimated marginal means" tab in the "ANOVA" window
 - Drag variables you want to plot together over to the "Marginal means" window
 - Can also click option to produce tables of fitted values

Two-Way ANOVA, post-hoc pairwise comparisons

Two-Way fixed effects ANOVA model:

$$Y = \mu + \tau_A + \tau_B + \tau_{A \times B} + \varepsilon.$$

• Can perform post-hoc tests, *taking care to adjust for the multiple comparisons problem*: recall Scheffé and Tukey's HSD.

Post Hoc Comparisons in Two-way, Fixed Effects ANOVA Model

	Co	mpa	rison						
Education	Sex		Education	Sex	Mean Difference	SE	df	t	Ptukey
Bachelor's	F	-	Bachelor's	М	0.433	0.384	12.000	1.129	0.860
		-	Master's	F	-1.167	0.384	12.000	-3.039	0.085
		-	Master's	M	-0.067	0.384	12.000	-0.174	1.000
		-	PhD	F	-1.300	0.384	12.000	-3.386	0.048
		-	PhD	M	-2.367	0.384	12.000	-6.164	<.001
	М	-	Master's	F	-1.600	0.384	12.000	-4.167	0.013
		-	Master's	M	-0.500	0.384	12.000	-1.302	0.779
		-	PhD	F	-1.733	0.384	12.000	-4.515	0.007
		-	PhD	Μ	-2.800	0.384	12.000	-7.293	<.001
Master's	F	-	Master's	M	1.100	0.384	12.000	2.865	0.113
		-	PhD	F	-0.133	0.384	12.000	-0.347	0.999
		-	PhD	M	-1.200	0.384	12.000	-3.126	0.074
	М	-	PhD	F	-1.233	0.384	12.000	-3.212	0.064
		-	PhD	Μ	-2.300	0.384	12.000	-5.991	<.001
PhD	F	-	PhD	М	-1.067	0.384	12.000	-2.778	0.129

Post Hoc Comparisons - Education * Sex

Ed Kroc (UBC)	EPSE 592	February 13, 2020	12 / 34
---------------	----------	-------------------	---------

Assumptions of Two-way, Fixed Effects ANOVA Model

Same assumptions as one-way model!

- Independence of observations ⇔ independence of errors
- Equal variances across factor levels (homoskedasticity)
- Errors should be normally distributed, $\varepsilon \sim N(0, \sigma^2)$

Check assumptions same way as one-way model.

Recall that this is the most important assumption and the most difficult to check.

- In general, good study design should *ensure* independence of observations (errors).
 - Did any of our sample individuals know each other?
 - Were the sampled individuals assessed for the anxiety measure jointly (as in a focus group setting), or independently of each other?

Many ways to check this assumption (use more than one!)

- Levene's test (*F*-test)
- Compare boxplots
- Compare plots of raw data

Te	est for Home	ogeneity of	Variances (Le	vene's)
	F	df1	df2	р
	2.142	5	12	0.130

- Levene's test not significant; thus, gives no evidence of heteroskedasticity.
- Lack of power? See plots...

• Some visual evidence of heteroskedasticity, but...

• ...only based on three data points per group. Not really enough data per group to adequately assess the homoskedasticity assumption.

Assumptions 3: normality of errors

• Looks pretty good! But again, only 18 data points total....

Ed Kroc (UBC)

February 13, 2020 19 / 34

Two-Way ANOVA, in practice

Two-way fixed effects ANOVA (full) model:

$$Y = \mu + \tau_A + \tau_B + \tau_{A \times B} + \varepsilon$$

- # of obs. in each category can be different. If all the same, then the design is said to be "balanced".
- Balanced analyses have higher power and are more robust to unequal variances across categories (i.e. violations of Assumption 2). They are very robust to moderate departures from normality; i.e. skewness not a big problem, but multiple modes or outliers can be.
- The interaction term, $\tau_{A \times B}$, is often of the greatest interest.
- However, need lots of data to detect meaningful interaction effects.

Generic *n*-way ANOVAs

Nothing special about two factors; can write models with as many explanatory factors as we like.

• For example, three-way fixed effects ANOVA (full) model:

 $Y = \mu + \tau_A + \tau_B + \tau_{A \times B} + \tau_C + \tau_{A \times C} + \tau_{B \times C} + \tau_{A \times B \times C} + \varepsilon$

• Or, for example, a four-way ANOVA with two pairwise interactions:

$$Y = \mu + \tau_A + \tau_B + \tau_C + \tau_D + \tau_{A \times C} + \tau_{B \times D} + \varepsilon$$

• Theoretically, the possibilities are endless.

Generic *n*-way ANOVAs

- However, in practice, the more complicated your model:
 - (1) the more data you need to detect effects
 - (2) the better experimental control you need to make sure you are isolating the effects of interest
 - (3) the harder it is to diagnose your model and check your assumptions (need lots more data!)
 - (4) the easier it is to fool yourself into thinking "complicated answer" means the same thing as "right answer"

Two-Way ANOVA: partitioning the variance

Return to the two-way fixed effects ANOVA (full) model:

$$Y = \mu + \tau_A + \tau_B + \tau_{A \times B} + \varepsilon$$

- Recall that we worked out mathematically how a one-way ANOVA model *partitions* the observed variance in our *response variable* into two pieces:
 - (1) variance explained by the (average) differences between the explanatory (categorical) variable,
 - (2) variance leftover (attributable to within-group/individual differences).
- An analagous kind of partitioning happens when we work with a more complicated ANOVA model....

• Suppose we have these sample data on Y over two categorical variables X and Z with 2 factor levels each:

	X = M	X = F
Z = No	2.0, 2.5, 2.3	1.9, 2.3, 2.6
Z = Yes	1.5, 1.6, 1.1	1.6, 1.7, 0.9

Then:

$$\overline{X_M} = 1.83, \ \overline{X_F} = 1.83, \ \overline{Z_N} = 2.27, \ \overline{Z_Y} = 1.40$$

And

$$\overline{X_M Z_N} = 2.27, \ \overline{X_M Z_Y} = 1.40, \ \overline{X_F Z_N} = 2.27, \ \overline{X_F Z_Y} = 1.40$$

• X denotes sex and Z denotes presence of a tumour; response is white blood cell count.

Ed Kroc (UBC)

EPSE 592

	Sum of Squares	df	Mean Square	F	р
Sex	0.000	1	0.000	4.152e-30	1.000
Tumour	2.253	1	2.253	20.179	0.002
Sex * Tumour	0.000	1	0.000	4.312e-30	1.000
Residuals	0.893	8	0.112		

- No variation explained by averaging over sex
- Clear variation explained by averaging over tumour presence
- No additional variation explained by averaging over sex×tumour factor levels
- Leftover (residual) variation from individual observations within each fixed factor level

• Now response is measure of blood pressure; experimental design assigns people to no drug, Drug A, Drug B, or both.

	Drug A No	Drug A Yes
Drug B No	2.0, 2.5, 2.3	1.6, 1.7, 0.9
Drug B Yes	1.5, 1.6, 1.1	1.9, 2.3, 2.6

• Then:

$$\overline{A_N} = 1.83, \ \overline{A_Y} = 1.83, \ \overline{B_N} = 1.83, \ \overline{B_Y} = 1.83$$

And

$$\overline{A_N B_N} = 2.27, \ \overline{A_N B_Y} = 1.40, \ \overline{A_Y B_N} = 1.40, \ \overline{A_Y B_Y} = 2.27$$

	Sum of Squares	df	Mean Square	F	р
Drug A	0.000	1	0.000	4.760e-30	1.000
Drug B	0.000	1	0.000	3.140e-30	1.000
Drug A * Drug B	2.253	1	2.253	20.179	0.002
Residuals	0.893	8	0.112		

- No variation explained by taking Drug A (marginally)
- No variation explained by taking Drug B (marginally)
- Clear variation explained by taking both Drug A and Drug B
- Leftover (residual) variation from individual observations within each fixed factor level

- Those who took Drug A *only* saw blood pressure go down.
- Those who took Drug B only saw blood pressure go down.
- But those who took *both* drugs (or neither) have high blood pressure; drugs seem to be interacting to negate effects of treatment.

• Now suppose we have these sample data on Y over two categorical variables X and Z with 2 factor levels each:

	X = A	X = B
Z = 1	2.0, 2.5, 2.3	-1.2, 4.9, 3.1
<i>Z</i> = 2	0.7, 3.0, 3.1	1.9, 2.3, 2.6

Then:

$$\overline{X_A}=2.27,\ \overline{X_B}=2.27,\ \overline{Z_1}=2.27,\ \overline{Z_2}=2.27$$

And

$$\overline{X_A Z_1} = 2.27, \ \overline{X_A Z_2} = 2.27, \ \overline{X_B Z_1} = 2.27, \ \overline{X_B Z_2} = 2.27$$

	Sum of Squares	df	Mean Square	F	р
Factor X	0.000	1	0.000	1.664e-32	1.000
Factor Z	0.000	1	0.000	9.359e-33	1.000
Factor X * Factor Z	0.000	1	0.000	1.664e-32	1.000
Residuals	23.707	8	2.963		

- No variation explained by averaging over X factor levels
- No variation explained by averaging over Z factor levels
- No variation explained by averaging over $X \times Z$ factor levels
- All variation is residual variation from individual observations within each fixed factor level

Notice: obviously there are differences between the $X \times Z$ groups, but not *average* differences.

- ANOVAs are only able to detect *average differences* between groups.
- But there are many ways groups can be different, e.g. different variance, skewness, kurtosis, etc.
- This is why it is always important to look at your data; don't just rely on statistical tests of hypotheses.

Ed Kroc (UBC)

EPSE 592