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Last Time

Assumptions of simple fixed effects ANOVA models

ANOVA model diagnostics

Two-way (one factor) fixed effects ANOVA model
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Today

More on two-way (one factor) fixed effects ANOVA model

Interpreting two-way interactions

Generic n-way ANOVA models
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Two-way (two factor) ANOVA, with interaction

Female Male

Bachelor’s 6.2, 6.6, 6.2 5.8, 6.0, 5.9

Master’s 6.9, 7.7, 7.9 6.2, 6.2, 6.8

PhD 6.9, 7.7, 8.3 9.0, 9.1, 8.3

Table: Anxiety data (10 point scale) vs. highest education attained cross sex.

Two-way, fixed effect ANOVA model, with interaction:

Yanx “ µ` τedu ` τsex ` τeduˆsex ` ε

This model will allow us to separate the marginal effects of Education
and Sex from any potential interaction effect of the two.
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Two-way (two factor) ANOVA, with interaction

Two-way, fixed effect ANOVA model, with interaction:

Yanx “ µ` τedu ` τsex ` τeduˆsex ` ε

Can uncover marginal and interaction effects simultaneously.

Notice: same main effect SSs as in one-way ANOVAs, and as in
two-way ANOVA without interaction (consult notes from previous
class).
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Two-way (two factor) ANOVA, with interaction

Two-way, fixed effect ANOVA model, with interaction:

Yanx “ µ` τedu ` τsex ` τeduˆsex ` ε

Again, each F -statistic corresponds to a different test of hypothesis:

Fedu “ MSedu{MSres tests H0 : τedu “ 0
Fsex “ MSsex{MSres tests H0 : τsex “ 0
Feduˆsex “ MSeduˆsex{MSres tests H0 : τeduˆsex “ 0
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Types of sums of squares

Actually though, for ANOVAs with at least two factors, there is more
than one way to partition a total sum of squares and to define a
reasonable F -test on marginal and interaction effects.

We will not get into the math behind this.

Generally, always default to the Type 3 sum of squares (Jamovi
defaults to this).

Type 1: some nice mathematical properties, but order of variables
matters (bad)

Type 2: more powerful when interactions not present (unlikely in
practice)

Type 3: good mathematical properties

Type 4: preferable in certain types of experimental designs
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Two-way (two factor) ANOVA, with interaction

Notice the apparent interaction effect: both sexes report higher anxiety
levels with higher education, but the rate of increase seems to be higher
for males.
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Two-way (two factor) ANOVA, with interaction

Plotting the group means and connecting them with a line for each
level of one category produces an “interaction plot.”

Very useful for visualizing interaction effects.

But note: whether or not the lines cross is irrelevant! We are only
assessing if the apparent trends are dissimilar.
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Two-way (two factor) ANOVA, with interaction

To make the previous interaction plot in Jamovi:

Use the “Estimated marginal means” tab in the “ANOVA” window

Drag variables you want to plot together over to the “Marginal means”
window

Can also click option to produce tables of fitted values
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Two-Way ANOVA, post-hoc pairwise comparisons

Two-Way fixed effects ANOVA model:

Y “ µ` τA ` τB ` τAˆB ` ε.

Can perform post-hoc tests, taking care to adjust for the multiple
comparisons problem: recall Scheffé and Tukey’s HSD.
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Post Hoc Comparisons in Two-way, Fixed Effects ANOVA
Model
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Assumptions of Two-way, Fixed Effects ANOVA Model

Same assumptions as one-way model!

Independence of observations ô independence of errors

Equal variances across factor levels (homoskedasticity)

Errors should be normally distributed, ε „ Np0, σ2q

Check assumptions same way as one-way model.
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Assumptions 1: independence

Recall that this is the most important assumption and the most difficult to
check.

In general, good study design should ensure independence of
observations (errors).

Did any of our sample individuals know each other?

Were the sampled individuals assessed for the anxiety measure jointly
(as in a focus group setting), or independently of each other?
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Assumptions 2: homoskedasticity (equal variances across
groups)

Many ways to check this assumption (use more than one!)

Levene’s test (F -test)

Compare boxplots

Compare plots of raw data
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Assumptions 2: homoskedasticity (equal variances across
groups)

Levene’s test not significant; thus, gives no evidence of
heteroskedasticity.

Lack of power? See plots...
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Assumptions 2: homoskedasticity (equal variances across
groups)

Some visual evidence of heteroskedasticity, but...
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Assumptions 2: homoskedasticity (equal variances across
groups)

...only based on three data points per group. Not really enough data
per group to adequately assess the homoskedasticity assumption.

Ed Kroc (UBC) EPSE 592 February 13, 2020 18 / 34



Assumptions 3: normality of errors

Looks pretty good! But again, only 18 data points total....
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Two-Way ANOVA, in practice

Two-way fixed effects ANOVA (full) model:

Y “ µ` τA ` τB ` τAˆB ` ε

# of obs. in each category can be different. If all the same, then the
design is said to be “balanced”.

Balanced analyses have higher power and are more robust to unequal
variances across categories (i.e. violations of Assumption 2). They are
very robust to moderate departures from normality; i.e. skewness not
a big problem, but multiple modes or outliers can be.

The interaction term, τAˆB , is often of the greatest interest.

However, need lots of data to detect meaningful interaction effects.
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Generic n-way ANOVAs

Nothing special about two factors; can write models with as many
explanatory factors as we like.

For example, three-way fixed effects ANOVA (full) model:

Y “ µ` τA ` τB ` τAˆB ` τC ` τAˆC ` τBˆC ` τAˆBˆC ` ε

Or, for example, a four-way ANOVA with two pairwise interactions:

Y “ µ` τA ` τB ` τC ` τD ` τAˆC ` τBˆD ` ε

Theoretically, the possibilities are endless.
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Generic n-way ANOVAs

However, in practice, the more complicated your model:

(1) the more data you need to detect effects

(2) the better experimental control you need to make sure you are isolating
the effects of interest

(3) the harder it is to diagnose your model and check your assumptions
(need lots more data!)

(4) the easier it is to fool yourself into thinking “complicated answer”
means the same thing as “right answer”
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Two-Way ANOVA: partitioning the variance

Return to the two-way fixed effects ANOVA (full) model:

Y “ µ` τA ` τB ` τAˆB ` ε

Recall that we worked out mathematically how a one-way ANOVA
model partitions the observed variance in our response variable into
two pieces:

(1) variance explained by the (average) differences between the
explanatory (categorical) variable,

(2) variance leftover (attributable to within-group/individual
differences).

An analagous kind of partitioning happens when we work with a more
complicated ANOVA model....
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Extreme examples to clarify partitions of variance: Ex. 1

Suppose we have these sample data on Y over two categorical
variables X and Z with 2 factor levels each:

X “ M X “ F

Z “ No 2.0, 2.5, 2.3 1.9, 2.3, 2.6

Z “ Yes 1.5, 1.6, 1.1 1.6, 1.7, 0.9

Then:
ĚXM “ 1.83, ĎXF “ 1.83, ĎZN “ 2.27, ĎZY “ 1.40

And

ĞXMZN “ 2.27, ĞXMZY “ 1.40, ĞXFZN “ 2.27, ĞXFZY “ 1.40

X denotes sex and Z denotes presence of a tumour; response is white
blood cell count.
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Extreme examples to clarify partitions of variance: Ex. 1
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Extreme examples to clarify partitions of variance: Ex. 1

No variation explained by averaging over sex

Clear variation explained by averaging over tumour presence

No additional variation explained by averaging over sexˆtumour
factor levels

Leftover (residual) variation from individual observations within each
fixed factor level
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Extreme examples to clarify partitions of variance: Ex. 2

Now response is measure of blood pressure; experimental design
assigns people to no drug, Drug A, Drug B, or both.

Drug A No Drug A Yes

Drug B No 2.0, 2.5, 2.3 1.6, 1.7, 0.9

Drug B Yes 1.5, 1.6, 1.1 1.9, 2.3, 2.6

Then:
ĎAN “ 1.83, ĎAY “ 1.83, ĎBN “ 1.83, ĎBY “ 1.83

And

ĞANBN “ 2.27, ĞANBY “ 1.40, ĞAYBN “ 1.40, ĞAYBY “ 2.27
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Extreme examples to clarify partitions of variance: Ex. 2
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Extreme examples to clarify partitions of variance: Ex. 2

No variation explained by taking Drug A (marginally)

No variation explained by taking Drug B (marginally)

Clear variation explained by taking both Drug A and Drug B

Leftover (residual) variation from individual observations within each
fixed factor level
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Extreme examples to clarify partitions of variance: Ex. 2

Those who took Drug A only saw blood pressure go down.

Those who took Drug B only saw blood pressure go down.

But those who took both drugs (or neither) have high blood pressure;
drugs seem to be interacting to negate effects of treatment.
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Extreme examples to clarify partitions of variance: Ex. 3

Now suppose we have these sample data on Y over two categorical
variables X and Z with 2 factor levels each:

X “ A X “ B

Z “ 1 2.0, 2.5, 2.3 -1.2, 4.9, 3.1

Z “ 2 0.7, 3.0, 3.1 1.9, 2.3, 2.6

Then:
ĎXA “ 2.27, ĎXB “ 2.27, ĎZ1 “ 2.27, ĎZ2 “ 2.27

And

ĘXAZ1 “ 2.27, ĘXAZ2 “ 2.27, ĞXBZ1 “ 2.27, ĞXBZ2 “ 2.27

Ed Kroc (UBC) EPSE 592 February 13, 2020 31 / 34



Extreme examples to clarify partitions of variance: Ex. 3
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Extreme examples to clarify partitions of variance: Ex. 3

No variation explained by averaging over X factor levels

No variation explained by averaging over Z factor levels

No variation explained by averaging over X ˆ Z factor levels

All variation is residual variation from individual observations within
each fixed factor level
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Extreme examples to clarify partitions of variance: Ex. 3

Notice: obviously there are differences between the X ˆ Z groups, but not
average differences.

ANOVAs are only able to detect average differences between groups.

But there are many ways groups can be different, e.g. different
variance, skewness, kurtosis, etc.

This is why it is always important to look at your data; don’t just
rely on statistical tests of hypotheses.
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