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Last Time

Type I and type II errors

Multiple testing problems

Orders of magnitude rule for interpretation of p-values

One-way (one factor) fixed effects ANOVA model
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Today

ANOVA as a way to partition variance in the response into two pieces:
(1) variance explained by average treatment effects, and
(2) leftover variation (i.e. variation within each treatment group)

Fundamental equation of ANOVA:

SStotal “ SSbetween ` SSwithin

“ SStreatment ` SSerror

Constructing an F-test for an ANOVA from the mean squares; i.e.
sample variances

Post-hoc vs. pre-planned pairwise comparisons
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The One-way, Fixed Effects ANOVA Model

The one-way (one-factor), fixed effects ANOVA model:

Y “ µ ` τX ` ε

Y is the continuous response of interest
X is the categorical variable, with observations in all categories, used
to explain variation in Y
µ is the grand mean; i.e. the average of all Y values
τX is the average treatment effect of X on Y; i.e. the average of all
Y ´ µ values for each fixed value of X
ε is the leftover error; i.e. the variation in Y unexplained by µ and τX.
Used to test the hypothesis H0 : τX “ 0 for all X values
simultaneously.
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The One-way, Fixed Effects ANOVA Model

Understanding the treatment effect encoded by τX:

µ

τ1

µ1

τ2

µ2

τ3

µ3

In general, τX “ average of all Y ´ µ values for each fixed X value

Expressed another way, τX “ µX ´ µ

So, if all treatments have the same effect, then they all equal the
grand mean µ and τX “ 0 for all fixed values of X.
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The One-way, Fixed Effects ANOVA Model

Understanding the individual error encoded by ε: suppose we have data
points on Y (continuous response) and X, a categorical variable with 3
levels. Suppose observations Y1, Y2, and Y3 belong to group X1.

µ µ1

ε1

Y1

ε2

Y2

ε3

Y3µ2 µ3

In general, ε can be different for every observation/individual; it is the
difference between the observed response Y and the group mean µX

Explicitly, ε “ Y ´ µX
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The One-way, Fixed Effects ANOVA Model

The one-way (one-factor), fixed effects ANOVA model:

Y “ µ ` τX ` ε

Using the previous two slides, this model can be rewritten as:

Y ´ µ “ pµX ´ µq ` pY ´ µXq

In practice, we do not observe µ or µX, but we do observe the sample
grand mean and sample group means.

Can use these sample statistics to estimate the above equation and
then test the hypothesis that H0 : µX “ µ for all fixed values of X.
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Example: education levels vs. anxiety

Recall our data on self-reported anxiety levels:

Bachelor’s pj “ 1q Master’s pj “ 2q PhD pj “ 3q

Y1,1 “ 6.2 Y1,2 “ 6.2 Y1,3 “ 6.9
Y2,1 “ 5.8 Y2,2 “ 6.9 Y2,3 “ 9.0
Y3,1 “ 6.0 Y3,2 “ 6.2 Y3,3 “ 7.7
Y4,1 “ 5.9 Y4,2 “ 7.7 Y4,3 “ 9.1
Y5,1 “ 6.6 Y5,2 “ 6.8 Y5,3 “ 8.3
Y6,1 “ 6.2 Y6,2 “ 7.9 Y6,3 “ 8.0

ĎY¨1 “ 6.12 ĎY¨2 “ 6.95 ĎY¨3 “ 8.12

ĎY¨¨ “ 7.08
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Partitioning the ANOVA model into variance components

Our goal is to partition the observed variation in our response Y into two
distinct pieces:

(1) variation explained by the different factor levels (treatments)
(2) leftover (residual) variation

Recall: our ANOVA model can be written as:

Y ´ µ “ pµX ´ µq ` pY ´ µXq (theoretical model)

Since we do not observe µX or µ, we replace them by their sample
estimates ĎY¨j and ĎY¨¨

Also, replace the generic Y by our observed Yij values:

Yij ´ ĎY¨¨ “ pĎY¨j ´ ĎY¨¨q ` pYij ´ ĎY¨jq (sample estimate of model)
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Partitioning the ANOVA model into variance components

Now we square both sides of the equation:

pYij ´ ĎY¨¨q
2 “

“

pĎY¨j ´ ĎY¨¨q ` pYij ´ ĎY¨jq
‰2

“ pĎY¨j ´ ĎY¨¨q
2 ` pYij ´ ĎY¨jq

2 ` 2pĎY¨j ´ ĎY¨¨qpYij ´ ĎY¨jq

Now sum over all observations:
K

ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨¨q

2 “

K
ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨q

2 `

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨jq

2

` 2
K

ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨qpYij ´ ĎY¨jq

Last time: showed the cross term always equals 0.

Ed Kroc (UBC) EPSE 592 February 6, 2020 10 / 58



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Partitioning the ANOVA model into variance components

Left with the fundamental equation of analysis of variance.

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨¨q

2 “

K
ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨q

2 `

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨jq

2

This equation says that the sample variance in the response variable is
equal to the sample variance in the average response for each
treatment plus the sample variance of the responses within each
treatment.

This is typically written as a sum of squares (SS) equation:

SStotal “ SStreatment ` SSerror

Or:
SStotal “ SSbetween ` SSwithin
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Partitioning the ANOVA model into variance components

Left with the fundamental equation of analysis of variance.

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨¨q

2 “

K
ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨q

2 `

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨jq

2

Notice how each term is a sum of squared differences from the grand
(terms 1 and 2) or treatment (term 3) means. This is exactly how we
always measure variability, up to a constant multiple.

Notice: the variance in the response is partitioned into variability
explained by the average treatment effect (term 2) plus variability
leftover (term 3).
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Examples to clarify the math: Ex. 1

Suppose we have these sample data on Y over a categorical variable
X with 3 factor levels:

X “ 1 X “ 2 X “ 3
Y1,1 “ 1 Y1,2 “ ´1 Y1,3 “ 5
Y2,1 “ 1 Y2,2 “ ´1 Y2,3 “ 5
Y3,1 “ 1 Y3,2 “ ´1 Y3,3 “ 5

Then:
ĎY¨1 “ 1, ĎY¨2 “ ´1, ĎY¨3 “ 5

And ĎY¨¨ “ 1.67.

Now plug into the fundamental equation of ANOVA:
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Examples to clarify the math: Ex. 1

Fundamental equation of ANOVA:

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨¨q

2 “

K
ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨q

2 `

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨jq

2

Notice that the last term equals zero!

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨jq

2 “p1 ´ 1q2 ` p1 ´ 1q2 ` p1 ´ 1q2

` p´1 ` 1q2 ` p´1 ` 1q2 ` p´1 ` 1q2

` p5 ´ 5q2 ` p5 ´ 5q2 ` p5 ´ 5q2 “ 0

So, as expected, all the variability in the response is explained by the
different treatment/factor levels of X.
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Examples to clarify the math: Ex. 2

Now, suppose we have these sample data instead on Y over a
categorical variable X with 3 factor levels:

X “ 1 X “ 2 X “ 3
Y1,1 “ ´1.1 Y1,2 “ ´4.2 Y1,3 “ 0.5
Y2,1 “ 0.5 Y2,2 “ ´0.1 Y2,3 “ 0.6
Y3,1 “ 2.4 Y3,2 “ 6.1 Y3,3 “ 0.7

Then:
ĎY¨1 “ 0.6, ĎY¨2 “ 0.6, ĎY¨3 “ 0.6

And ĎY¨¨ “ 0.6.

Now plug into the fundamental equation of ANOVA:
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Examples to clarify the math: Ex. 2

Fundamental equation of ANOVA:

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨¨q

2 “

K
ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨q

2 `

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨jq

2

Notice that the second term equals zero now!

K
ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨q

2 “p0.6 ´ 0.6q2 ` p0.6 ´ 0.6q2 ` p0.6 ´ 0.6q2

` p0.6 ´ 0.6q2 ` p0.6 ´ 0.6q2 ` p0.6 ´ 0.6q2

` p0.6 ´ 0.6q2 ` p0.6 ´ 0.6q2 ` p0.6 ´ 0.6q2 “ 0

So, as expected, all the variability in the response is explained by the
variation within each treatment/factor level of X.
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Mean sum of squares

The fundamental equation of analysis of variance:

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨¨q

2 “

K
ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨q

2 `

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨jq

2

Notice how each term is a sum of squared differences from the grand
(terms 1 and 2) or treatment (term 3) means. This is exactly how we
always measure variability, up to a constant multiple.

Recall: to define the sample variance, we had to divide by a constant:

S2 “
1

N ´ 1

N
ÿ

ℓ“1
pYℓ ´ sYq2

The same applies for the ANOVA equation:
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Mean sum of squares

An unbiased estimator of the total variance is the total mean square:

MStotal “
1

N ´ 1

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨¨q

2

An unbiased estimator of the between treatment variance is the
treatment mean square:

MStreatment “
1

K ´ 1

K
ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨q

2

An unbiased estimator of the within treatment variance is the error
mean square:

MSerror “
1

N ´ K

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨jq

2

Ed Kroc (UBC) EPSE 592 February 6, 2020 18 / 58



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Testing the ANOVA null hypothesis

Recall that the null hypothesis that a one-way (fixed factor) ANOVA
model is designed to test is:

H0 : µ1 “ µ2 “ ¨ ¨ ¨ “ µK,

where µj is the mean response over the jth category of the
explanatory factor X, 1 ď j ď K.

Under this null hypothesis, we have that:

MStreatment
MSerror

„ FpK ´ 1,N ´ Kq

That is, the ratio of the between and within treatment sample
variance estimators derived from the ANOVA model give an
F-statistic under the null hypothesis.

Thus, we can use this ratio as a test statistic and calculate p-values!
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Example: education vs. anxiety

Bachelor’s Master’s PhD
6.2 6.2 6.9
5.8 6.9 9.0
6.0 6.2 7.7
5.9 7.7 9.1
6.6 6.8 8.3
6.2 7.9 8.0

The “treatments” (i.e. factor levels) here are different levels of
education attained.

An ANOVA will decompose the total variance in the data into one
piece that captures variability within each factor level, and one piece
that captures variability of the average response between all factor
levels.
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Example: education vs. anxiety

In Jamovi:

Enter data as two columns (anxiety, education) just as you would for
an independent samples t-test in Jamovi.

Click “Analyses” tab, then “ANOVA”, then “ANOVA” again.

Assign “Anxiety” to dependent variable.

Assign “Education” to fixed factor(s).

Sums of squares, degrees of freedom, mean squares, F-statistic, and
p-value will appear in output.

Click on appropriate boxes to produce assumption checks, pre-planned
contrasts, or post-hoc comparisons.
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Example: education vs. anxiety

Very small p-value (equivalent to very large F-statistic) means data
are inconsistent with the null hypothesis.

Thus, seem to have evidence that at least one factor level of
education produces different average anxiety responses than the other
levels of education.
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Example: education vs. anxiety

Notice: mean squares equal sum of squares divided by appropriate
degrees of freedom.

Notice: F-statistic is quotient of MSptreatmentq and MSperrorq.

TERMINOLOGY: we usually refer to observed errors as residuals.
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Post hoc, pairwise treatment comparisons

In the previous example, we found strong evidence that the data are
inconsistent with

H0 : τ1 “ τ2 “ τ3 “ 0

But which treatments actually exhibit significant differences?

Post hoc comparisons:
Testing for pairwise (or other composite) differences after you have
observed a significant F-statistic in the ANOVA.
This is different than pre-planning a specific pairwise (or other
composite) comparison before you run your ANOVA.
Statistical procedure: run a bunch of t-tests on the groups you want to
compare.
But what about the multiple testing issue (i.e. inflated Type I error)?...
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Post hoc, pairwise treatment comparisons

There are many different techniques that have been developed to
conduct post hoc comparisons while adjusting for Type I error
inflation:

Bonferroni (bad: never use for post hoc comparisons of an ANOVA)
Tukey’s honest significant differences
Scheffe’s correction
...and many others

All these methods examine different types of t-tests and/or impose
different p-value adjustments.

The output of all these methods is interpreted the same: exactly how
you would interpret a standard t-test.
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Post hoc, pairwise treatment comparisons

In Jamovi, click on “Post Hoc Tests” tab;

Identify the variable/factor you want to make comparisons on;

Select which kind of adjustment you want to make.
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Post hoc, pairwise treatment comparisons

Scheffe’s is most common: widely applicable, but conservative.

Tukey’s is more powerful than Scheffe’s when groups are close to
balanced; i.e. when the number of responses in each treatment group
are about the same.

weak evidence of a Master’s vs. PhD effect

no evidence of a Bachelor’s vs. Master’s effect

strong evidence of a Bachelor’s vs. PhD effect
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Post hoc vs. pre-planned comparisons

Post hoc comparisons are experimentally (and so statistically)
different from pre-planned comparisons. Why?

A post hoc comparison is made because you first observe a significant
ANOVA statistic; i.e. your decision to make a follow-up comparison
depends on the outcome of your first statistical test (the ANOVA)
A pre-planned comparison is decided upon in the experimental design
phase, before you collect any data or observe any statistics; thus, it is
not dependent on the outcome of any other statistics (e.g. an ANOVA)
Post hoc comparisons are more susceptible to inflated Type I errors
Pre-planned comparisons will provide stronger evidence, since you are
not just “looking for any significant effects”

In most applied research, all pairwise comparisons are post hoc

In deeper, more controlled experiments (e.g. Phase II and III clinical
trials), pre-planned comparisons are required
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Assumptions of One-way, Fixed Effects ANOVA Model

Independence of observations ô independence of errors
By far, the most important assumption.
If this fails, you cannot trust your analysis for anything.
Good study design will ensure this holds (e.g. random sampling).
Maybe check residuals vs. time of measurement plot

Equal variances across factor levels (homoskedasticity)
Moderately important assumption.
If this fails, you can lose a lot of power to detect effects.
Can formally check with Levene’s test in Jamovi; inspect groupwise
boxplots; inspect residuals vs. fitted values plot

Errors should be normally distributed, ε „ Np0, σ2q

Least important (but still important!) assumption.
ANOVA usually quite robust to moderate departures from normality
(CLT helps).
Check qq-plot; check residuals vs. fitted values plot
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Assumption 1: independence of observations

If study required completely random sampling, then Assumption 1
should hold.

Things to consider in general:
Are the data a completely random sample?
Could there be an order of measurement effect? For example, was the
same interviewer measuring anxiety in all respondents and was their
“mood” always the same? Or maybe they were tired and snippy at the
end of the day, so could have made the respondents more stressed out
later in the day? This could produce autocorrelation in time.
Could there be a proximity effect? For example, was half of the random
sample generated at the library (high stress environment) and the other
half at a coffee shop (low stress environment)? This could produce
autocorrelation in space.

If Assumption 1 is violated, need to add random effects (will discuss
later) and/or discuss with a statistician
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Assumption 2: equal variances across factor levels

In Jamovi, check with Levene’s test (F-test)

Also a good idea to check groupwise boxplots (under “Exploration”
ñ “Descriptives” option in Jamovi):

But can be difficult to tell if variances are similar for skewed data...
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Assumption 2: equal variances across factor levels

Check plot of residuals (observed errors) vs. fitted values (sample
treatment means):

Literally, compares the errors made by the model with the predictions
(or “fits”) made by the model for your set of observations.

These plots should always be checked when fitting any kind of
statistical model (e.g. ANOVA, regression)
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Residuals vs. Fitted Values Plots

Ideally, for ANOVA:
average residual should = 0 for each fixed fitted value (look at the red
line in the plot: gives the mean residuals),
residuals should look approx. normally distributed for each fixed fitted
value,
residual variation should be about the same for all fixed fitted value
levels,
if all this holds, then ε „ Np0, σ2q is a reasonable assumption.
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Residuals vs. Fitted Values Plots

To plot residuals (observed errors) vs. fitted values (sample treatment
means) in Jamovi:

Click on “Modules” in upper right and then install “Rj - Editor to run
R code inside Jamovi” [only have to do this step the first time]
Click the “R” tab, and then “Rj Editor”
Copy the following code into the editor window (in general, you could
replace “Anxiety” or “Education” with the names of other variables):
mod1 <- aov(formula=data$Anxiety~data$Education)
plot(mod1)

Press the green triangle button to run the code
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Assumption 2: equal variances across factor levels

Back to our example: some evidence of heteroskedasticity in residuals
vs. fitted values plot (same as in boxplots)

But Levene’s test said no evidence of heteroskedasticity!

Common to have different diagnostics suggest different conclusions

In practice, only severe violations of ANOVA assumptions are usually
worrisome; for our example, heteroskedasticity is mild, so likely not a
major worry.

But if heteroskedasticity is extreme... you will likely have to change
your model/method
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Assumption 3: normality of errors

In Jamovi, check with qq-plot of residuals:

Compares observed quantiles (percentiles) of standardized errors
(residuals) vs. theoretical quantiles (percentiles) of a standard normal
distribution: all points close to diagonal = good!
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Assumption 3: normality of errors

Or: check plot of residuals (observed errors) vs. fitted values (sample
treatment means) as before:

Data should look somewhat normally distributed, with mean zero, in
each factor level.

In our example, this looks like a reasonable assumption.
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What to do if your assumptions are violated?

If violations are mild, then can likely still use a traditional analysis,
but:

intepretations/conclusions should be made carefully,
violations of assumptions should always be reported.

Otherwise, if normality and/or homoskedasticity are violated:
can perform robust tests of hypotheses (e.g. Welch tests)
can try to transform variables to obviate violations (not advised)
can use a different methodology altogether (e.g. nonparametric
ANOVA)

As always, if your observations are not independent (Assumption 1),
then the analysis cannot be trusted. A different methodology is the
only way out of this.
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Buildling a more realistic model

In practice, we usually have multiple explanatory factors/variables we
would like to account for.

This will require defining a more complex model.

For our anxiety data, suppose we also have information on the sex of
each respondent.

We would like to then see if education level and/or sex explain
variation in the anxiety response.

Note: I’ll assume sex is binary here (usually necessary in statistical
practice since usually the vast majority of your sample respondents
will be M/F; i.e. won’t have any power to detect sex effects for other
categories).
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One-way ANOVA (Education)

Bachelor’s Master’s PhD
6.2 6.2 6.9
5.8 6.9 9.0
6.0 6.2 7.7
5.9 7.7 9.1
6.6 6.8 8.3
6.2 7.9 8.0

Table: Self-reported anxiety levels, 10 point scale. 18 respondents.

One-way, fixed effect ANOVA model:

Yanx “ µ ` τedu ` ε, [or]
Yanx “ µ ` pµedu ´ µq ` pYanx ´ µeduq

Ed Kroc (UBC) EPSE 592 February 6, 2020 40 / 58



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

One-way ANOVA (Education)
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One-way ANOVA plotting

In Jamovi:

Install the ‘scatr’ module via “Modules” button in top right (first time
only)

Click on “Exploration” and then “Descriptives”

Select the variable(s) you want to plot and which factor(s) you want
to split your response by.

Under “Plots”, select “Data” and “Stacked”

Note: there is no statistical difference between the “Stacked” and the
“Jittered” options when plotting. They are simply different visual choices
(“jittering” adds some arbitary horizontal space between nearby points to
aid visualization).

Ed Kroc (UBC) EPSE 592 February 6, 2020 42 / 58



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

One-way ANOVA (Sex)

Female Male
6.2, 6.6, 6.2 5.8, 6.0, 5.9
6.9, 7.7, 7.9 6.2, 6.2, 6.8
6.9, 7.7, 8.3 9.0, 9.1, 8.3

Table: Self-reported anxiety levels, 10 point scale. 18 respondents.

One-way, fixed effect ANOVA model:

Yanx “ µ ` τsex ` ε, [or]
Yanx “ µ ` pµsex ´ µq ` pYanx ´ µsexq

Note: the error, ε, will not be the same as in the previous model, since
the explanatory factor is not the same (sex, rather than education)
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One-way ANOVA (Sex)
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Compare the two one-way ANOVAs

Since we are explaining (partioning) variance in the same response in
both ANOVAs, the SSs add up to the same number.
Education seems to explain some variation, but sex does not; what
about an interaction effect?
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One-way ANOVA on a “composite” variable

Female Male
Bachelor’s 6.2, 6.6, 6.2 5.8, 6.0, 5.9
Master’s 6.9, 7.7, 7.9 6.2, 6.2, 6.8
PhD 6.9, 7.7, 8.3 9.0, 9.1, 8.3

Table: Same data, now split into six distinct categories.

One-way, fixed effect ANOVA model:

Yanx “ µ ` τeduˆsex ` ε, [or]
Yanx “ µ ` pµeduˆsex ´ µq ` pYanx ´ µeduˆsexq

Note again: as always, the error, ε, is not the same as in the previous
two models (different explanatory variable now)
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One-way ANOVA on a “composite” variable
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Compare all three one-way ANOVAs

Note: again, we see SSs add up to the same number.
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One-way ANOVA on a “composite” variable

This ANOVA explains more variation in our response than the
previous two ANOVAs.

But how do we interpret it?

How to separate marginal effects from interaction effects?
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Two-way (two factor) ANOVA, no interaction (marginals
only)

Two-way, fixed effect ANOVA model, no interaction:

Yanx “ µ ` τedu ` τsex ` ε

Each F-statistic corresponds to a different test of hypothesis:
F-stat on Education factor tests if all education groups have the same
average response: F “ MSedu{MSres
F-stat on Sex factor tests if both sex groups have the same average
response: F “ MSsex{MSres
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Two-way (two factor) ANOVA, no interaction (marginals
only)

Two-way, fixed effect ANOVA model, no interaction:

Yanx “ µ ` τedu ` τsex ` ε

In practice, there is no need to adjust for multiple comparisons here
because the ANOVA model tests each hypothesis by using the same
model/error information.
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Two-way (two factor) ANOVA, no interaction (marginals
only)

Compare the output of the separate one-way ANOVAs:

...with the output of the two-way ANOVA:
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Two-way (two factor) ANOVA, with interaction

Two-way, fixed effect ANOVA model, with interaction:

Yanx “ µ ` τedu ` τsex ` τeduˆsex ` ε

Can uncover marginal and interaction effects simultaneously.

Notice: same main effect SSs as in one-way ANOVAs, and as in
two-way ANOVA without interaction.
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Two-way (two factor) ANOVA, with interaction

Two-way, fixed effect ANOVA model, with interaction:

Yanx “ µ ` τedu ` τsex ` τeduˆsex ` ε

Again, each F-statistic corresponds to a different test of hypothesis:
Fedu “ MSedu{MSres tests H0 : τedu “ 0
Fsex “ MSsex{MSres tests H0 : τsex “ 0
Feduˆsex “ MSeduˆsex{MSres tests H0 : τeduˆsex “ 0
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Two-way (two factor) ANOVA, with interaction

Compare the output of the two-way ANOVA with an interaction:

...with the output of the one-way ANOVA on the six categories induced by
the two factors:
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Two-way (two factor) ANOVA, with interaction

Notice the apparent interaction effect: both sexes report higher anxiety
levels with higher education, but the rate of increase seems to be higher
for males.

Ed Kroc (UBC) EPSE 592 February 6, 2020 56 / 58



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Two-way (two factor) ANOVA, with interaction

Plotting the group means and connecting them with a line for each
level of one category produces an “interaction plot.”
Very useful for visualizing interaction effects.
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Two-way (two factor) ANOVA, with interaction

To make the previous interaction plot in Jamovi:
Use the “Estimated marginal means” tab in the “ANOVA” window
Drag variables you want to plot together over to the “Marginal means”
window
Can also click option to produce tables of fitted values
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