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Last Time

Hypothesis tests, test statistics, and p-values

Z-test

t-tests (independent samples and paired)

F-tests (testing equality of variances)
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Today

Type I and type II errors

Multiple testing and adjustments for inflated type I errors

P-value interpretations (orders of magnitude rule)

One-way ANOVA (testing mean differences for more than 2 groups)
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Example: three experimental groups of interest

Suppose we are interested in studying how amount of higher education
correlates with self-reported anxiety levels. We have a survey designed to
measure anxiety and give it to 18 people at UBC: 6 who have obtained
Bachelor’s degrees, 6 who have obtained Master’s degrees, and 6 who
have obtained PhDs (chosen how?).

Bachelor’s Master’s PhD
6.2 6.2 6.9
5.8 6.9 9.0
6.0 6.2 7.7
5.9 7.7 9.1
6.6 6.8 8.3
6.2 7.9 8.0

Table: Self-reported anxiety levels, 10 point scale. 18 respondents.
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Example: three experimental groups of interest

Could perform 3 independent-samples t-tests to test the 3 null
hypotheses:

H0,1 : µB “ µM

H0,2 : µM “ µP

H0,3 : µB “ µP
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Example: three experimental groups of interest

Could perform 3 independent-samples t-tests to test the 3 null
hypotheses:

H0,1 : µB “ µM ùñ p-value ă 0.05
H0,2 : µM “ µP ùñ p-value ă 0.05
H0,3 : µB “ µP ùñ p-value ăă 0.05

But what about inflated Type I error?
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Type I and Type II Errors

Recall: when p-value small, conclude data inconsistent with H0.

Recall: when p-value large, conclude data consistent with H0.

Whenever we make a decision about a hypothesis based on a p-value,
we have a chance of making an error.

Given H0 true Given H0 false
data inconsistent

with H0

Type I error
false positive

Correct decision
true positive

data consistent
with H0

Correct decision
true negative

Type II error
false negative
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Type I and Type II Errors

Traditionally, we set a predetermined significance level, α, such that

PrpType I errorq “ Prpp ´ value ă α | H0 trueq “ α.

Then α, sample size, variability, and choice of test determine

PrpType II errorq “ Prpp ´ value ą α | H0 falseq “ β.

The confidence level, or specificity, of a test is defined as

Prpp ´ value ą α | H0 trueq “ 1 ´ α.

The power, or sensitivity, of a test is defined as

Prpp ´ value ă α | H0 falseq “ 1 ´ β.
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Type I and Type II Errors

In practice, α “ 0.05 is a common choice.

Note: all of 1 ´ α, β, and 1 ´ β are determined once α has been
fixed, the data have been collected, and the choice of analysis made.

Good studies will strive to have 1 ´ β ě 0.80. Most studies will have
much lower power.

Given H0 true Given H0 false
Pr(data inconsistent

with H0 | ¨ ¨ ¨ ) α p1 ´ βq

Pr(data consistent
with H0 | ¨ ¨ ¨ ) p1 ´ αq β
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Type I and Type II Errors

Can split the universe of possibilities up into two disjoint pieces: H0
true or H0 false.
Event of interest (when the p-value is “small”) lives somewhere on
the two pieces; its complement (p-value is “large”) occupies the
remainder of the universe.
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Type I and Type II Errors

Keeping all else the same (e.g. sample size, choice of statistical test),
if we force α to be smaller, then this has to shrink the size of the
event of interest, tp-value smallu; thus, we necessarily increase β.
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Type I and Type II Errors

The only way to simultaneously decrease α and β (i.e. both kinds of
errors) is to increase our sample size or choose a better (i.e. more
powerful) statistical test.
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Multiple Testing

Each time we conduct a statistical test of hypothesis, we have a
chance of committing a Type I or Type II error.

The choice of α controls our chance of Type I error for a single test.

Thus, if our study requires more than one test, each one has a chance
of error.

Thus, if our study requires more than one test, we should be
concerned with the family-wise error rate: the probability of
committing at least one Type I error.
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Multiple Testing: example

Suppose we test two hypotheses that are independent of each other:
H0,1 : mean iron concentration in blood equal between 2 groups
H0,2 : mean anxiety levels equal between same 2 groups

Suppose we set α “

Prptest 1 significant | H0,1 trueq “ Prptest 2 significant | H0,2 trueq.

Rules of probability then tell us:
Prptest 1 or 2 significant | H0,1 and H0,2 trueq “

PrpT1 sig.|H0,1q ` PrpT2 sig.|H0,2q ´ PrpT1 and T2 sig.|H0,1,H0,2q

“ α ` α ´ α ¨ α

“ 2α ´ α2

ą α, since 0 ă α ă 1.

Therefore, family-wise error rate ą individual error rate.
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Adjustments for Multiple Tests

Practically, this means the more hypotheses we test, the less confident
we can be that our “significant” results are actually significant.

However, there are many ways to correct for this inflation of Type I
error due to multiple testing:

Bonferroni adjustment (most common, most conservative)
Šidák and Holm adjustments
Tukey adjustment
Scheffé adjustment
Benjamini-Hochberg adjustment
...and many others
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Adjustments for Multiple Tests

Bonferroni adjustement says:
Set an original α rate of Type I error.
Take this α and divide by the total number of tests, n, you will
perform: α1 :“ α{n.
This new α1 level is what you should use in each test to determine if
the p-value is “significant” or not.

The Bonferroni procedure guarantees that the chance of making any
Type I errors in any tests is no bigger than the original α level.

That is, Bonferroni ensures family-wise Type I error rate is no bigger
than α.

Bonferroni is very conservative: always works, but if tests are not
independent, can be a massive overcorrection.
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Adjustments for Multiple Tests: example

Recall our data on self-reported anxiety levels:

Bachelor’s Master’s PhD
6.2 6.2 6.9
5.8 6.9 9.0
6.0 6.2 7.7
5.9 7.7 9.1
6.6 6.8 8.3
6.2 7.9 8.0

We performed three t-tests of hypotheses to compare if the pairwise
means of these three groups were different.
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Adjustments for Multiple Tests: example

H0,1 : µB “ µM

H0,2 : µM “ µP

H0,3 : µB “ µP
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Adjustments for Multiple Tests: example

Using the Bonferroni correction, we would find

α1 “ 0.05{3 “ 0.017.

Comparing our p-values to the adjusted significane level yields:
H0,1 : µB “ µM ùñ p-value ą 0.017 (not significant)
H0,2 : µM “ µP ùñ p-value ą 0.017 (not significant)
H0,3 : µB “ µP ùñ p-value ă 0.017

Two issues here:
(1) Bonferroni too conservative (hypotheses not independent); means we

lose power to detect effects.
(2) There is no meaningful difference between a p-value of, say, 0.022 and

0.012. Yet here, the former is not “significant” while the latter is
“significant”.
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Adjustments for Multiple Tests

Two issues here:
(1) Bonferroni too conservative (hypotheses not independent); means we

lose power to detect effects.
(2) There is no meaningful difference between a p-value of, say, 0.022 and

0.012. Yet here, the former is not “significant” while the latter is
“significant”.

How to fix these issues?
(1) Choose a better test of hypotheses: ANOVA
(2) Discourage the enforcement of arbitrary thresholds; apply the orders of

magnitude rule: p-values that differ by less than one order of
magnitude are practically indistinguishable as measures of evidence.
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The Analysis of Variance (ANOVA) Paradigm

The general ANOVA methodology can be described as follows:
Rather than testing if each pair of m groups exhibit an average
difference, test only the null hypothesis

H0 : µ1 “ µ2 “ ¨ ¨ ¨ “ µm

Then, if the data are inconsistent with H0, we can start to test
individual pairs (or contrasts) for average differences, making proper
adjustments for inflated Type I errors along the way.

ANOVA procedure is more efficient than Bonferroni and other
adjustments.

ANOVA is a direct generalization of a t-test to a comparison of more
than two groups.
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The Analysis of Variance (ANOVA) Paradigm

Most importantly:
The ANOVA procedure can be generalized to account for a variety of
secondary effects (confounding variables).

ANOVA gives us a framework to study interaction effects; i.e. how
one explanatory variable can mediate the effect of another
explanatory variable on the response of interest.

ANOVA procedure is flexible enough to account for a large variety of
experimental designs (e.g. repeated measures, nested designs, random
effects, etc.)

We will explore all of these and more in the coming weeks.
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Data types

An ANOVA model posits a linear relationship between categorical
explanatory variables (factors) and a continuous response of interest.

Nominal data: categorical, no ordering
E.g. sex, preferred electoral candidate

Ordinal data: categorical, with ordering
E.g. rankings (Likert responses, maybe), severity of disease

Count data: ordering with equal distances
E.g. age*, number of occurrences

Continuous data: ordered continuum
E.g. time, space, height, weight, age*

Choice of model and analysis will depend on data type.
Note: Always ignore Stevens’s levels of measurement: nominal,
ordinal, interval, ratio - these are irrelevant in practice and in theory.
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The One-way, Fixed Effects ANOVA Model

The one-way (one-factor), fixed effects ANOVA model:

Y “ µ ` τX ` ε

Y is the continuous response of interest
X is the categorical variable, with observations in all categories, used
to explain variation in Y
A fixed effects model is one where the explanatory variable(s) X have
their values fixed by the experimenter, and/or are exhausted by the
experimental design.
µ is the grand mean; i.e. the average of all Y values
τX is the average treatment effect of X on Y; i.e. the average of all
Y ´ µ values for each fixed value of X
ε is the leftover error; i.e. the variation in Y unexplained by µ and τX.
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The One-way, Fixed Effects ANOVA Model: example

The one-way ANOVA model for our anxiety (Y) vs. education (X) data:

Yanx “ µ ` τedu ` ε

Levels of X were fixed by experimental design; thus, τedu is a fixed
effect that, here, can assume three values.
Y is a random variable, so ε is too.
Note: τX ‰ µX

µX “ average of all Y values for each fixed X value
τX “ average of all Y ´ µ values for each fixed X value

Thus, testing the hypothesis

H0 : µB “ µM “ µP

is equivalent to testing the hypothesis

H0 : τB “ τM “ τP “ 0
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The One-way, Fixed Effects ANOVA Model

Understanding the treatment effect encoded by τX:

µ

τ1

µ1

τ2

µ2

τ3

µ3

In general, τX “ average of all Y ´ µ values for each fixed X value

Expressed another way, τX “ µX ´ µ

So, if all treatments have the same effect, then they all equal the
grand mean µ and τX “ 0 for all fixed values of X.
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The One-way, Fixed Effects ANOVA Model

Understanding the individual error encoded by ε: suppose we have data
points on Y (continuous response) and X, a categorical variable with 3
levels. Suppose observations Y1, Y2, and Y3 belong to group X1.

µ µ1

ε1

Y1

ε2

Y2

ε3

Y3µ2 µ3

In general, ε can be different for every observation/individual; it is the
difference between the observed response Y and the group mean µX

Explicitly, ε “ Y ´ µX
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The One-way, Fixed Effects ANOVA Model

The one-way (one-factor), fixed effects ANOVA model:

Y “ µ ` τX ` ε

Using the previous two slides, this model can be rewritten as:

Y ´ µ “ pµX ´ µq ` pY ´ µXq

In practice, we do not observe µ or µX, but we do observe the sample
grand mean and sample group means.

Can use these sample statistics to estimate the above equation and
then test the hypothesis that H0 : µX “ µ for all fixed values of X.
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Partitioning the ANOVA model into variance components

We have observations on a response Y and an explanatory factor
variable X with K distinct factors.

For example, if X is the education level from previous example, then
K “ 3.

Total sample size “ N.
For example, in the anxiety vs. education example, N “ 18.

Sample size within each factor level of X is nj for 1 ď j ď K.
Therefore,

K
ÿ

j“1
nj “ N.

For example, in the anxiety vs. education example, nj “ 6 for all
1 ď j ď 3.
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Partitioning the ANOVA model into variance components

NOTATION: Yij denotes experimental unit i within factor level j.

NOTATION:
ĎY¨j “

1
nj

nj
ÿ

i“1
Yij

is the sample mean of the responses that all share the same factor
level j.

NOTATION:
ĎY¨¨ “

1
N

K
ÿ

j“1

nj
ÿ

i“1
Yij

is the sample mean of all responses.
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Example: education levels vs. anxiety

Bachelor’s pj “ 1q Master’s pj “ 2q PhD pj “ 3q

Y1,1 “ 6.2 Y1,2 “ 6.2 Y1,3 “ 6.9
Y2,1 “ 5.8 Y2,2 “ 6.9 Y2,3 “ 9.0
Y3,1 “ 6.0 Y3,2 “ 6.2 Y3,3 “ 7.7
Y4,1 “ 5.9 Y4,2 “ 7.7 Y4,3 “ 9.1
Y5,1 “ 6.6 Y5,2 “ 6.8 Y5,3 “ 8.3
Y6,1 “ 6.2 Y6,2 “ 7.9 Y6,3 “ 8.0

ĎY¨1 “ 6.12 ĎY¨2 “ 6.95 ĎY¨3 “ 8.12

ĎY¨¨ “ 7.08
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Partitioning the ANOVA model into variance components

Our goal is to partition the observed variation in our response Y into two
distinct pieces:

(1) variation explained by the different factor levels (treatments)
(2) leftover (residual) variation

Recall: our ANOVA model can be written as:

Y ´ µ “ pµX ´ µq ` pY ´ µXq (theoretical model)

Since we do not observe µX or µ, we replace them by their sample
estimates ĎY¨j and ĎY¨¨

Also, replace the generic Y by our observed Yij values:

Yij ´ ĎY¨¨ “ pĎY¨j ´ ĎY¨¨q ` pYij ´ ĎY¨jq (sample estimate of model)
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Partitioning the ANOVA model into variance components

Now we square both sides of the equation:

pYij ´ ĎY¨¨q
2 “

“

pĎY¨j ´ ĎY¨¨q ` pYij ´ ĎY¨jq
‰2

“ pĎY¨j ´ ĎY¨¨q
2 ` pYij ´ ĎY¨jq

2 ` 2pĎY¨j ´ ĎY¨¨qpYij ´ ĎY¨jq

Now sum over all observations:
K

ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨¨q

2 “

K
ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨q

2 `

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨jq

2

` 2
K

ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨qpYij ´ ĎY¨jq

Examine the last term in the equation:
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Partitioning the ANOVA model into variance components

Examine the last term in the equation:

2
K

ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨qpYij ´ ĎY¨jq “ 2

K
ÿ

j“1
pĎY¨j ´ ĎY¨¨q

nj
ÿ

i“1
pYij ´ ĎY¨jq

Now, we can simplify the last factor on the RHS as follows:
nj

ÿ

i“1
pYij ´ ĎY¨jq “

nj
ÿ

i“1
Yij ´

nj
ÿ

i“1

ĎY¨j

“
nj
nj

nj
ÿ

i“1
Yij ´ ĎY¨j

nj
ÿ

i“1
1

“ njĎY¨j ´ njĎY¨j

“ 0
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Partitioning the ANOVA model into variance components

Therefore, the entire cross-term disappears:

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨¨q

2 “

K
ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨q

2 `

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨jq

2

` 2
K

ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨qpYij ´ ĎY¨jq

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨¨q

2 “

K
ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨q

2 `

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨jq

2 ` 0
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Partitioning the ANOVA model into variance components

This final equation is the fundamental equation of analysis of variance.

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨¨q

2 “

K
ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨q

2 `

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨jq

2

This equation says that the sample variance in the response variable is
equal to the sample variance in the average response for each
treatment plus the sample variance of the responses within each
treatment.

This is typically written as a sum of squares (SS) equation:

SStotal “ SStreatment ` SSerror

Or:
SStotal “ SSbetween ` SSwithin
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Partitioning the ANOVA model into variance components

This final equation is the fundamental equation of analysis of variance.

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨¨q

2 “

K
ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨q

2 `

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨jq

2

Notice how each term is a sum of squared differences from the grand
(terms 1 and 2) or treatment (term 3) means. This is exactly how we
always measure variability, up to a constant multiple.

Notice: the variance in the response is partitioned into variability
explained by the average treatment effect (term 2) plus variability
leftover (term 3).
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Examples to clarify the math: Ex. 1

Suppose we have these sample data on Y over a categorical variable
X with 3 factor levels:

X “ 1 X “ 2 X “ 3
Y1,1 “ 1 Y1,2 “ ´1 Y1,3 “ 5
Y2,1 “ 1 Y2,2 “ ´1 Y2,3 “ 5
Y3,1 “ 1 Y3,2 “ ´1 Y3,3 “ 5

Then:
ĎY¨1 “ 1, ĎY¨2 “ ´1, ĎY¨3 “ 5

And ĎY¨¨ “ 1.67.

Now plug into the fundamental equation of ANOVA:
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Examples to clarify the math: Ex. 1

Fundamental equation of ANOVA:

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨¨q

2 “

K
ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨q

2 `

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨jq

2

Notice that the last term equals zero!

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨jq

2 “p1 ´ 1q2 ` p1 ´ 1q2 ` p1 ´ 1q2

` p´1 ` 1q2 ` p´1 ` 1q2 ` p´1 ` 1q2

` p5 ´ 5q2 ` p5 ´ 5q2 ` p5 ´ 5q2 “ 0

So, as expected, all the variability in the response is explained by the
different treatment/factor levels of X.
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Examples to clarify the math: Ex. 2

Now, suppose we have these sample data instead on Y over a
categorical variable X with 3 factor levels:

X “ 1 X “ 2 X “ 3
Y1,1 “ ´1.1 Y1,2 “ ´4.2 Y1,3 “ 0.5
Y2,1 “ 0.5 Y2,2 “ ´0.1 Y2,3 “ 0.6
Y3,1 “ 2.4 Y3,2 “ 6.1 Y3,3 “ 0.7

Then:
ĎY¨1 “ 0.6, ĎY¨2 “ 0.6, ĎY¨3 “ 0.6

And ĎY¨¨ “ 0.6.

Now plug into the fundamental equation of ANOVA:
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Examples to clarify the math: Ex. 2

Fundamental equation of ANOVA:

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨¨q

2 “

K
ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨q

2 `

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨jq

2

Notice that the second term equals zero now!

K
ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨q

2 “p0.6 ´ 0.6q2 ` p0.6 ´ 0.6q2 ` p0.6 ´ 0.6q2

` p0.6 ´ 0.6q2 ` p0.6 ´ 0.6q2 ` p0.6 ´ 0.6q2

` p0.6 ´ 0.6q2 ` p0.6 ´ 0.6q2 ` p0.6 ´ 0.6q2 “ 0

So, as expected, all the variability in the response is explained by the
variation within each treatment/factor level of X.
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Mean sum of squares

The fundamental equation of analysis of variance:

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨¨q

2 “

K
ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨q

2 `

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨jq

2

Notice how each term is a sum of squared differences from the grand
(terms 1 and 2) or treatment (term 3) means. This is exactly how we
always measure variability, up to a constant multiple.

Recall: to define the sample variance, we had to divide by a constant:

S2 “
1

N ´ 1

N
ÿ

ℓ“1
pYℓ ´ sYq2

The same applies for the ANOVA equation:

Ed Kroc (UBC) EPSE 592 January 30, 2020 42 / 44



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Mean sum of squares

An unbiased estimator of the total variance is the total mean square:

MStotal “
1

N ´ 1

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨¨q

2

An unbiased estimator of the between treatment variance is the
treatment mean square:

MStreatment “
1

K ´ 1

K
ÿ

j“1

nj
ÿ

i“1
pĎY¨j ´ ĎY¨¨q

2

An unbiased estimator of the within treatment variance is the error
mean square:

MSerror “
1

N ´ K

K
ÿ

j“1

nj
ÿ

i“1
pYij ´ ĎY¨jq

2
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Testing the ANOVA null hypothesis

Recall that the null hypothesis that a one-way (fixed factor) ANOVA
model is designed to test is:

H0 : µ1 “ µ2 “ ¨ ¨ ¨ “ µK,

where µj is the mean response over the jth category of the
explanatory factor X, 1 ď j ď K.

Under this null hypothesis, we have that:

MStreatment
MSerror

„ FpK ´ 1,N ´ Kq

That is, the ratio of the between and within treatment sample
variance estimators derived from the ANOVA model give an
F-statistic under the null hypothesis.

Thus, we can use this ratio as a test statistic and calculate p-values!
Ed Kroc (UBC) EPSE 592 January 30, 2020 44 / 44


