EPSE 592: Design \& Analysis of Experiments

Ed Kroc
University of British Columbia ed.kroc@ubc.ca

January 30, 2020

Last Time

- Hypothesis tests, test statistics, and p-values
- Z-test
- t-tests (independent samples and paired)
- F-tests (testing equality of variances)

Today

- Type I and type II errors
- Multiple testing and adjustments for inflated type I errors
- P-value interpretations (orders of magnitude rule)
- One-way ANOVA (testing mean differences for more than 2 groups)

Example: three experimental groups of interest

Suppose we are interested in studying how amount of higher education correlates with self-reported anxiety levels. We have a survey designed to measure anxiety and give it to 18 people at UBC: 6 who have obtained Bachelor's degrees, 6 who have obtained Master's degrees, and 6 who have obtained PhDs (chosen how?).

Bachelor's	Master's	PhD
6.2	6.2	6.9
5.8	6.9	9.0
6.0	6.2	7.7
5.9	7.7	9.1
6.6	6.8	8.3
6.2	7.9	8.0

Table: Self-reported anxiety levels, 10 point scale. 18 respondents.

Example: three experimental groups of interest

- Could perform 3 independent-samples t-tests to test the 3 null hypotheses:
- $H_{0,1}: \mu_{B}=\mu_{M}$

Independent Samples T-Test

		statistic	df	p
A	Student's t	-2.63	10.0	0.025

- $H_{0,2}: \mu_{M}=\mu_{P}$

Independent Samples T-Test				
		statistic	df	p
C	Student's t	2.71	10.0	0.022

- $H_{0,3}: \mu_{B}=\mu_{P}$

Independent Samples T-Test				
	statistic	df	p	
E	Student's t	-5.73	10.0	$<.001$

Example: three experimental groups of interest

- Could perform 3 independent-samples t-tests to test the 3 null hypotheses:
- $H_{0,1}: \mu_{B}=\mu_{M} \Longrightarrow p$-value <0.05
- $H_{0,2}: \mu_{M}=\mu_{P} \Longrightarrow p$-value <0.05
- $H_{0,3}: \mu_{B}=\mu_{P} \Longrightarrow p$-value $\ll 0.05$
- But what about inflated Type I error?

Type I and Type II Errors

- Recall: when p-value small, conclude data inconsistent with H_{0}.
- Recall: when p-value large, conclude data consistent with H_{0}.
- Whenever we make a decision about a hypothesis based on a p-value, we have a chance of making an error.

	Given H_{0} true	Given H_{0} false
data inconsistent	Type I error	Correct decision
with H_{0}	false positive	true positive
data consistent	Correct decision	Type II error
with H_{0}	true negative	false negative

Type I and Type II Errors

- Traditionally, we set a predetermined significance level, α, such that

$$
\operatorname{Pr}(\text { Type I error })=\operatorname{Pr}\left(p-\text { value }<\alpha \mid H_{0} \text { true }\right)=\alpha .
$$

- Then α, sample size, variability, and choice of test determine

$$
\operatorname{Pr}(\text { Type II error })=\operatorname{Pr}\left(p-\text { value }>\alpha \mid H_{0} \text { false }\right)=\beta
$$

- The confidence level, or specificity, of a test is defined as

$$
\operatorname{Pr}\left(p-\text { value }>\alpha \mid H_{0} \text { true }\right)=1-\alpha .
$$

- The power, or sensitivity, of a test is defined as

$$
\operatorname{Pr}\left(p-\text { value }<\alpha \mid H_{0} \text { false }\right)=1-\beta
$$

Type I and Type II Errors

- In practice, $\alpha=0.05$ is a common choice.
- Note: all of $1-\alpha, \beta$, and $1-\beta$ are determined once α has been fixed, the data have been collected, and the choice of analysis made.
- Good studies will strive to have $1-\beta \geqslant 0.80$. Most studies will have much lower power.

	Given H_{0} true	Given H_{0} false
$\operatorname{Pr}($ data inconsistent with $\left.H_{0} \mid \cdots\right)$	α	$(1-\beta)$
Pr $($ data consistent with $\left.H_{0} \mid \cdots\right)$	$(1-\alpha)$	β

Type I and Type II Errors

- Can split the universe of possibilities up into two disjoint pieces: H_{0} true or H_{0} false.
- Event of interest (when the p-value is "small") lives somewhere on the two pieces; its complement (p-value is "large") occupies the remainder of the universe.

Type I and Type II Errors

- Keeping all else the same (e.g. sample size, choice of statistical test), if we force α to be smaller, then this has to shrink the size of the event of interest, $\{\boldsymbol{p}$-value small $\}$; thus, we necessarily increase β.

Type I and Type II Errors

- The only way to simultaneously decrease α and β (i.e. both kinds of errors) is to increase our sample size or choose a better (i.e. more powerful) statistical test.

Multiple Testing

- Each time we conduct a statistical test of hypothesis, we have a chance of committing a Type I or Type II error.
- The choice of α controls our chance of Type I error for a single test.
- Thus, if our study requires more than one test, each one has a chance of error.
- Thus, if our study requires more than one test, we should be concerned with the family-wise error rate: the probability of committing at least one Type I error.

Multiple Testing: example

- Suppose we test two hypotheses that are independent of each other:
- $H_{0,1}$: mean iron concentration in blood equal between 2 groups
- $H_{0,2}$: mean anxiety levels equal between same 2 groups
- Suppose we set $\alpha=$
$\operatorname{Pr}\left(\right.$ test 1 significant $\mid H_{0,1}$ true $)=\operatorname{Pr}\left(\right.$ test 2 significant $\mid H_{0,2}$ true $)$.
- Rules of probability then tell us:
$\operatorname{Pr}\left(\right.$ test 1 or 2 significant $\mid H_{0,1}$ and $H_{0,2}$ true $)=$

$$
\begin{aligned}
\operatorname{Pr}\left(T_{1} \text { sig. } \mid H_{0,1}\right)+\operatorname{Pr}\left(T_{2} \text { sig. } \mid H_{0,2}\right) & -\operatorname{Pr}\left(T_{1} \text { and } T_{2} \text { sig. } \mid H_{0,1}, H_{0,2}\right) \\
& =\alpha+\alpha-\alpha \cdot \alpha \\
& =2 \alpha-\alpha^{2} \\
& >\alpha, \text { since } 0<\alpha<1 .
\end{aligned}
$$

- Therefore, family-wise error rate $>$ individual error rate.

Adjustments for Multiple Tests

- Practically, this means the more hypotheses we test, the less confident we can be that our "significant" results are actually significant.
- However, there are many ways to correct for this inflation of Type I error due to multiple testing:
- Bonferroni adjustment (most common, most conservative)
- Šidák and Holm adjustments
- Tukey adjustment
- Scheffé adjustment
- Benjamini-Hochberg adjustment
- ...and many others

Adjustments for Multiple Tests

- Bonferroni adjustement says:
- Set an original α rate of Type I error.
- Take this α and divide by the total number of tests, n, you will perform: $\alpha^{\prime}:=\alpha / n$.
- This new α^{\prime} level is what you should use in each test to determine if the p -value is "significant" or not.
- The Bonferroni procedure guarantees that the chance of making any Type I errors in any tests is no bigger than the original α level.
- That is, Bonferroni ensures family-wise Type I error rate is no bigger than α.
- Bonferroni is very conservative: always works, but if tests are not independent, can be a massive overcorrection.

Adjustments for Multiple Tests: example

Recall our data on self-reported anxiety levels:

Bachelor's	Master's	PhD
6.2	6.2	6.9
5.8	6.9	9.0
6.0	6.2	7.7
5.9	7.7	9.1
6.6	6.8	8.3
6.2	7.9	8.0

- We performed three t-tests of hypotheses to compare if the pairwise means of these three groups were different.

Adjustments for Multiple Tests: example

- $H_{0,1}: \mu_{B}=\mu_{M}$

Independent Samples T-Test

		statistic	df	p
A	Student's t	-2.63	10.0	0.025

- $H_{0,2}: \mu_{M}=\mu_{P}$

> Independent Samples T-Test

		statistic	df	p
C	Student's t	2.71	10.0	0.022

- $H_{0,3}: \mu_{B}=\mu_{P}$

> Independent Samples T-Test

		statistic	df	p
E	Student's t	-5.73	10.0	$<.001$

Adjustments for Multiple Tests: example

Using the Bonferroni correction, we would find

$$
\alpha^{\prime}=0.05 / 3=0.017
$$

- Comparing our p-values to the adjusted significane level yields:
- $H_{0,1}: \mu_{B}=\mu_{M} \Longrightarrow p$-value >0.017 (not significant)
- $H_{0,2}: \mu_{M}=\mu_{P} \Longrightarrow p$-value >0.017 (not significant)
- $H_{0,3}: \mu_{B}=\mu_{P} \Longrightarrow p$-value <0.017
- Two issues here:
(1) Bonferroni too conservative (hypotheses not independent); means we lose power to detect effects.
(2) There is no meaningful difference between a p-value of, say, 0.022 and 0.012 . Yet here, the former is not "significant" while the latter is "significant".

Adjustments for Multiple Tests

- Two issues here:
(1) Bonferroni too conservative (hypotheses not independent); means we lose power to detect effects.
(2) There is no meaningful difference between a p-value of, say, 0.022 and 0.012 . Yet here, the former is not "significant" while the latter is "significant".
- How to fix these issues?
(1) Choose a better test of hypotheses: ANOVA
(2) Discourage the enforcement of arbitrary thresholds; apply the orders of magnitude rule: p-values that differ by less than one order of magnitude are practically indistinguishable as measures of evidence.

The Analysis of Variance (ANOVA) Paradigm

The general ANOVA methodology can be described as follows:

- Rather than testing if each pair of m groups exhibit an average difference, test only the null hypothesis

$$
H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{m}
$$

- Then, if the data are inconsistent with H_{0}, we can start to test individual pairs (or contrasts) for average differences, making proper adjustments for inflated Type I errors along the way.
- ANOVA procedure is more efficient than Bonferroni and other adjustments.
- ANOVA is a direct generalization of a t-test to a comparison of more than two groups.

The Analysis of Variance (ANOVA) Paradigm

Most importantly:

- The ANOVA procedure can be generalized to account for a variety of secondary effects (confounding variables).
- ANOVA gives us a framework to study interaction effects; i.e. how one explanatory variable can mediate the effect of another explanatory variable on the response of interest.
- ANOVA procedure is flexible enough to account for a large variety of experimental designs (e.g. repeated measures, nested designs, random effects, etc.)
- We will explore all of these and more in the coming weeks.

Data types

An ANOVA model posits a linear relationship between categorical explanatory variables (factors) and a continuous response of interest.

- Nominal data: categorical, no ordering
- E.g. sex, preferred electoral candidate
- Ordinal data: categorical, with ordering
- E.g. rankings (Likert responses, maybe), severity of disease
- Count data: ordering with equal distances
- E.g. age*, number of occurrences
- Continuous data: ordered continuum
- E.g. time, space, height, weight, age*

Choice of model and analysis will depend on data type.
Note: Always ignore Stevens's levels of measurement: nominal, ordinal, interval, ratio - these are irrelevant in practice and in theory

The One-way, Fixed Effects ANOVA Model

The one-way (one-factor), fixed effects ANOVA model:

$$
Y=\mu+\tau_{X}+\varepsilon
$$

- Y is the continuous response of interest
- X is the categorical variable, with observations in all categories, used to explain variation in Y
- A fixed effects model is one where the explanatory variable(s) X have their values fixed by the experimenter, and/or are exhausted by the experimental design.
- μ is the grand mean; i.e. the average of all Y values
- τ_{X} is the average treatment effect of X on Y; i.e. the average of all $Y-\mu$ values for each fixed value of X
- ε is the leftover error; i.e. the variation in Y unexplained by μ and τ_{X}.

The One-way, Fixed Effects ANOVA Model: example

The one-way ANOVA model for our anxiety (Y) vs. education (X) data:

$$
Y_{a n x}=\mu+\tau_{e d u}+\varepsilon
$$

- Levels of X were fixed by experimental design; thus, $\tau_{\text {edu }}$ is a fixed effect that, here, can assume three values.
- Y is a random variable, so ε is too.
- Note: $\tau_{X} \neq \mu_{X}$
- $\mu_{X}=$ average of all Y values for each fixed X value
- $\tau_{X}=$ average of all $Y-\mu$ values for each fixed X value
- Thus, testing the hypothesis

$$
H_{0}: \mu_{B}=\mu_{M}=\mu_{P}
$$

is equivalent to testing the hypothesis

$$
H_{0}: \tau_{B}=\tau_{M}=\tau_{P}=0
$$

The One-way, Fixed Effects ANOVA Model

Understanding the treatment effect encoded by τ_{X} :

- In general, $\tau_{X}=$ average of all $Y-\mu$ values for each fixed X value
- Expressed another way, $\tau_{X}=\mu_{X}-\mu$
- So, if all treatments have the same effect, then they all equal the grand mean μ and $\tau_{X}=0$ for all fixed values of X.

The One-way, Fixed Effects ANOVA Model

Understanding the individual error encoded by ε : suppose we have data points on Y (continuous response) and X, a categorical variable with 3 levels. Suppose observations Y_{1}, Y_{2}, and Y_{3} belong to group X_{1}.

- In general, ε can be different for every observation/individual; it is the difference between the observed response Y and the group mean μ_{X}
- Explicitly, $\varepsilon=Y-\mu_{X}$

The One-way, Fixed Effects ANOVA Model

- The one-way (one-factor), fixed effects ANOVA model:

$$
Y=\mu+\tau_{X}+\varepsilon
$$

- Using the previous two slides, this model can be rewritten as:

$$
Y-\mu=\left(\mu_{X}-\mu\right)+\left(Y-\mu_{X}\right)
$$

- In practice, we do not observe μ or μ_{X}, but we do observe the sample grand mean and sample group means.
- Can use these sample statistics to estimate the above equation and then test the hypothesis that $H_{0}: \mu_{X}=\mu$ for all fixed values of X.

Partitioning the ANOVA model into variance components

- We have observations on a response Y and an explanatory factor variable X with K distinct factors.
- For example, if X is the education level from previous example, then $K=3$.
- Total sample size $=N$.
- For example, in the anxiety vs. education example, $N=18$.
- Sample size within each factor level of X is n_{j} for $1 \leqslant j \leqslant K$. Therefore,

$$
\sum_{j=1}^{K} n_{j}=N
$$

- For example, in the anxiety vs. education example, $n_{j}=6$ for all $1 \leqslant j \leqslant 3$.

Partitioning the ANOVA model into variance components

- NOTATION: $Y_{i j}$ denotes experimental unit i within factor level j.
- NOTATION:

$$
\bar{Y}_{\cdot j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} Y_{i j}
$$

is the sample mean of the responses that all share the same factor level j.

- NOTATION:

$$
\overline{Y_{. .}}=\frac{1}{N} \sum_{j=1}^{K} \sum_{i=1}^{n_{j}} Y_{i j}
$$

is the sample mean of all responses.

Example: education levels vs. anxiety

Bachelor's $(j=1)$	Master's $(j=2)$	PhD $(j=3)$
$Y_{1,1}=6.2$	$Y_{1,2}=6.2$	$Y_{1,3}=6.9$
$Y_{2,1}=5.8$	$Y_{2,2}=6.9$	$Y_{2,3}=9.0$
$Y_{3,1}=6.0$	$Y_{3,2}=6.2$	$Y_{3,3}=7.7$
$Y_{4,1}=5.9$	$Y_{4,2}=7.7$	$Y_{4,3}=9.1$
$Y_{5,1}=6.6$	$Y_{5,2}=6.8$	$Y_{5,3}=8.3$
$Y_{6,1}=6.2$	$Y_{6,2}=7.9$	$Y_{6,3}=8.0$
$Y_{\cdot 1}=6.12$	$\overline{Y_{\cdot 2}}=6.95$	$\overline{Y_{\cdot 3}}=8.12$

$$
\overline{Y . .}=7.08
$$

Partitioning the ANOVA model into variance components

Our goal is to partition the observed variation in our response Y into two distinct pieces:

- (1) variation explained by the different factor levels (treatments)
- (2) leftover (residual) variation
- Recall: our ANOVA model can be written as:

$$
Y-\mu=\left(\mu_{X}-\mu\right)+\left(Y-\mu_{X}\right) \quad \text { (theoretical model) }
$$

- Since we do not observe μ_{X} or μ, we replace them by their sample estimates $\bar{Y}_{. j}$ and $\overline{Y . .}$
- Also, replace the generic Y by our observed $Y_{i j}$ values:

$$
Y_{i j}-\bar{Y}_{. .}=\left(\bar{Y}_{\cdot j}-\bar{Y}_{. .}\right)+\left(Y_{i j}-\bar{Y}_{. j}\right) \quad \text { (sample estimate of model) }
$$

Partitioning the ANOVA model into variance components

- Now we square both sides of the equation:

$$
\begin{aligned}
\left(Y_{i j}-\overline{Y_{. .}}\right)^{2} & =\left[\left(\bar{Y}_{\cdot j}-\overline{Y_{. .}}\right)+\left(Y_{i j}-\bar{Y}_{\cdot j}\right)\right]^{2} \\
& =\left(\overline{Y_{\cdot j}}-\overline{Y_{. .}}\right)^{2}+\left(Y_{i j}-\bar{Y}_{\cdot j}\right)^{2}+2\left(\overline{Y_{\cdot j}}-\overline{Y_{. .}}\right)\left(Y_{i j}-\bar{Y}_{\cdot j}\right)
\end{aligned}
$$

- Now sum over all observations:

$$
\begin{aligned}
\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\overline{Y_{. .}}\right)^{2}= & \sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(\overline{Y_{\cdot j}}-\overline{Y_{. .}}\right)^{2}+\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{\cdot j}\right)^{2} \\
& +2 \sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(\overline{Y_{\cdot j}}-\overline{Y_{. .}}\right)\left(Y_{i j}-\bar{Y}_{\cdot j}\right)
\end{aligned}
$$

- Examine the last term in the equation:

Partitioning the ANOVA model into variance components

- Examine the last term in the equation:

$$
2 \sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(\overline{Y_{\cdot j}}-\overline{Y_{. .}}\right)\left(Y_{i j}-\bar{Y}_{\cdot j}\right)=2 \sum_{j=1}^{K}\left(\overline{Y_{\cdot j}}-\overline{Y_{. .}}\right) \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{\cdot j}\right)
$$

- Now, we can simplify the last factor on the RHS as follows:

$$
\begin{aligned}
\sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{\cdot j}\right) & =\sum_{i=1}^{n_{j}} Y_{i j}-\sum_{i=1}^{n_{j}} \overline{Y_{\cdot j}} \\
& =\frac{n_{j}}{n_{j}} \sum_{i=1}^{n_{j}} Y_{i j}-\bar{Y}_{\cdot j} \sum_{i=1}^{n_{j}} 1 \\
& =n_{j} \bar{Y}_{\cdot j}-n_{j} \bar{Y}_{\cdot j} \\
& =0
\end{aligned}
$$

Partitioning the ANOVA model into variance components

- Therefore, the entire cross-term disappears:

$$
\begin{aligned}
& \sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\overline{Y_{. .}}\right)^{2}= \sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(\overline{Y_{. j}}-\overline{Y_{. .}}\right)^{2}+\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{\cdot j}\right)^{2} \\
&+2 \sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(\overline{Y_{. j}}-\overline{Y_{. .}}\right)\left(Y_{i j}-\bar{Y}_{. j}\right) \\
& \sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\overline{Y_{. .}}\right)^{2}=\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(\overline{Y_{\cdot j}}-\overline{Y_{. .}}\right)^{2}+\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{. j}\right)^{2}+0
\end{aligned}
$$

Partitioning the ANOVA model into variance components

- This final equation is the fundamental equation of analysis of variance.

$$
\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\overline{Y_{. .}}\right)^{2}=\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(\overline{Y_{. j}}-\overline{Y_{. .}}\right)^{2}+\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{. j}\right)^{2}
$$

- This equation says that the sample variance in the response variable is equal to the sample variance in the average response for each treatment plus the sample variance of the responses within each treatment.
- This is typically written as a sum of squares (SS) equation:

$$
S S_{\text {total }}=S S_{\text {treatment }}+S S_{\text {error }}
$$

Or:

$$
S S_{\text {total }}=S S_{\text {between }}+S S_{\text {within }}
$$

Partitioning the ANOVA model into variance components

- This final equation is the fundamental equation of analysis of variance.

$$
\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\overline{Y_{. .}}\right)^{2}=\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(\overline{Y_{. j}}-\overline{Y_{. .}}\right)^{2}+\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{. j}\right)^{2}
$$

- Notice how each term is a sum of squared differences from the grand (terms 1 and 2) or treatment (term 3) means. This is exactly how we always measure variability, up to a constant multiple.
- Notice: the variance in the response is partitioned into variability explained by the average treatment effect (term 2) plus variability leftover (term 3).

Examples to clarify the math: Ex. 1

- Suppose we have these sample data on Y over a categorical variable X with 3 factor levels:

$$
\begin{array}{|c|c|c|}
\hline X=1 & X=2 & X=3 \\
\hline \hline Y_{1,1}=1 & Y_{1,2}=-1 & Y_{1,3}=5 \\
Y_{2,1}=1 & Y_{2,2}=-1 & Y_{2,3}=5 \\
Y_{3,1}=1 & Y_{3,2}=-1 & Y_{3,3}=5 \\
\hline
\end{array}
$$

Then:

$$
\overline{Y_{\cdot 1}}=1, \quad \overline{Y_{\cdot 2}}=-1, \quad \overline{Y_{\cdot 3}}=5
$$

And $\bar{Y} . .=1.67$.

- Now plug into the fundamental equation of ANOVA:

Examples to clarify the math: Ex. 1

Fundamental equation of ANOVA:

$$
\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\overline{Y_{. .}}\right)^{2}=\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(\overline{Y_{. j}}-\overline{Y_{. .}}\right)^{2}+\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{. j}\right)^{2}
$$

- Notice that the last term equals zero!

$$
\begin{aligned}
\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\overline{Y_{\cdot j}}\right)^{2}= & (1-1)^{2}+(1-1)^{2}+(1-1)^{2} \\
& +(-1+1)^{2}+(-1+1)^{2}+(-1+1)^{2} \\
& +(5-5)^{2}+(5-5)^{2}+(5-5)^{2}=0
\end{aligned}
$$

- So, as expected, all the variability in the response is explained by the different treatment/factor levels of X.

Examples to clarify the math: Ex. 2

- Now, suppose we have these sample data instead on Y over a categorical variable X with 3 factor levels:

$X=1$	$X=2$	$X=3$
$Y_{1,1}=-1.1$	$Y_{1,2}=-4.2$	$Y_{1,3}=0.5$
$Y_{2,1}=0.5$	$Y_{2,2}=-0.1$	$Y_{2,3}=0.6$
$Y_{3,1}=2.4$	$Y_{3,2}=6.1$	$Y_{3,3}=0.7$

Then:

$$
\overline{Y_{\cdot}}=0.6, \quad \overline{Y_{\cdot 2}}=0.6, \quad \overline{Y_{\cdot 3}}=0.6
$$

And $\overline{Y_{. .}}=0.6$.

- Now plug into the fundamental equation of ANOVA:

Examples to clarify the math: Ex. 2

Fundamental equation of ANOVA:

$$
\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\overline{Y_{. .}}\right)^{2}=\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(\overline{Y_{. j}}-\overline{Y_{. .}}\right)^{2}+\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{. j}\right)^{2}
$$

- Notice that the second term equals zero now!

$$
\begin{aligned}
\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(\overline{Y_{. j}}-\overline{Y_{. .}}\right)^{2}= & (0.6-0.6)^{2}+(0.6-0.6)^{2}+(0.6-0.6)^{2} \\
& +(0.6-0.6)^{2}+(0.6-0.6)^{2}+(0.6-0.6)^{2} \\
& +(0.6-0.6)^{2}+(0.6-0.6)^{2}+(0.6-0.6)^{2}=0
\end{aligned}
$$

- So, as expected, all the variability in the response is explained by the variation within each treatment/factor level of X.

Mean sum of squares

- The fundamental equation of analysis of variance:

$$
\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\overline{Y_{. .}}\right)^{2}=\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(\overline{Y_{. j}}-\overline{Y_{. .}}\right)^{2}+\sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{. j}\right)^{2}
$$

- Notice how each term is a sum of squared differences from the grand (terms 1 and 2) or treatment (term 3) means. This is exactly how we always measure variability, up to a constant multiple.
- Recall: to define the sample variance, we had to divide by a constant:

$$
S^{2}=\frac{1}{N-1} \sum_{\ell=1}^{N}\left(Y_{\ell}-\bar{Y}\right)^{2}
$$

- The same applies for the ANOVA equation:

Mean sum of squares

- An unbiased estimator of the total variance is the total mean square:

$$
M S_{\text {total }}=\frac{1}{N-1} \sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\overline{Y_{. .}}\right)^{2}
$$

- An unbiased estimator of the between treatment variance is the treatment mean square:

$$
M S_{\text {treatment }}=\frac{1}{K-1} \sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(\bar{Y}_{. j}-\bar{Y}_{. .}\right)^{2}
$$

- An unbiased estimator of the within treatment variance is the error mean square:

$$
M S_{\text {error }}=\frac{1}{N-K} \sum_{j=1}^{K} \sum_{i=1}^{n_{j}}\left(Y_{i j}-\bar{Y}_{\cdot j}\right)^{2}
$$

Testing the ANOVA null hypothesis

- Recall that the null hypothesis that a one-way (fixed factor) ANOVA model is designed to test is:

$$
H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{K},
$$

where μ_{j} is the mean response over the j th category of the explanatory factor $X, 1 \leqslant j \leqslant K$.

- Under this null hypothesis, we have that:

$$
\frac{M S_{\text {treatment }}}{M S_{\text {error }}} \sim F(K-1, N-K)
$$

- That is, the ratio of the between and within treatment sample variance estimators derived from the ANOVA model give an F-statistic under the null hypothesis.
- Thus, we can use this ratio as a test statistic and calculate p-values!

