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Sample Statistics

In practice, we study a random variable by observing its values on
only a sample.

Studying this sample allows us to infer properties of the actual
random variable if the sample is random and representative.

This is basically what applied statistics is all about!
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Sample Statistics

We can approximate a r.v.’s PMF or PDF by plotting a histogram of
our sample data.

Visit: http://www.shodor.org/interactivate/activities/NormalDistribution/
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Sample Statistics

We can get a sense of the “typical” value of our r.v. by calculating a
sample mean, sample median, or sample mode.

Let tX1, . . . ,Xnu denote a random sample of n independent
observations from the random variable X . We define the sample
mean by:

sX “
1

n

n
ÿ

i“1

Xi .

sample median = 50th percentile of sample data

sample mode = most commonly observed value in sample data

Rememeber: these can all be different!
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Sample Statistics

We can get a sense of the spread or dispersion (variability) of our r.v.
by calculating a sample variance.

Let tX1, . . . ,Xnu denote a random sample of n independent
observations from the random variable X . We define the sample
variance by:

S2 “
1

n ´ 1

n
ÿ

i“1

pXi ´
sX q2.
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Sample Statistics vs. Properties of Random Variables

Although the definitions of expectation and sample mean, and of
variance and sample variance, look very similar, they are
fundamentally different.

Sample mean and variance are functions of the data/sample. Different
samples will generate different values for sample mean/variance even if
the samples are from the same population.

Expectactions and variances of random variables are idealized
quantities. They are inherent properties of the random phenomenon we
are studying. We usually cannot calculate them in practice; we can
only estimate them via our sample approximations.
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Standard Errors

Because sample statistics are random (i.e. not fixed) quantities, they
are genuine random variables on their own!

Thus, they have expectations, variances, std. devs. of their own.

Terminology: the standard error of a sample statistic is simply its
standard deviation.

If T denotes a sample statistic, then we usually write SE pT q to
denote its standard error.

In practice, standard errors are functions of the sample size and the
original variability in the population from which we sampled our data.

Ed Kroc (UBC) EPSE 592 January 23, 2020 9 / 39



Confidence Intervals

A confidence interval is a way of summarizing a sample statistic (e.g.
sample mean) and its standard error at once.

An (approximate) 95% confidence interval for the expectation
(population mean), µX , of a continuous random variable X from a
random sample tX1, . . . ,Xnu, for large n, is

r sX ´ 2 ¨ SE p sX q, sX ` 2 ¨ SE p sX qs

Notice, this CI depends on the sample; i.e., it is a statistic.

Interpretation: if we resample 100 times and calculate the 95%
confidence interval for each new sample, then approximately 95 of
those CIs will contain the true (unknown) population mean.
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Central Limit Theorem

Central Limit Theorem (CLT)

Let tX1, . . . ,Xnu denote a random sample of n independent observations
from a common distribution with finite mean µ and finite variance σ2.
Recall the sample mean is given by

sX “
1

n

n
ÿ

i“1

Xi .

Then, for n large, sX is approximately distributed as Npµ, σ2{nq.

This is one of the most important theorems of classical statistics.
Tells us all about how the sample mean behaves for an independent
random sample from any common distribution with finite mean and
variance.
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Central Limit Theorem: example

Histogram of random sample of size 100 from a very skewed (Gamma)
random variable.

Sample mean is 0.366 for this particular set of 100 sample data points.
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Central Limit Theorem: example continued

Histogram of the sample means of 1000 random samples (each of size
100) from the same very skewed (Gamma) random variable.

Notice the histogram looks quite Normal! (CLT at work)
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Central Limit Theorem

Moral: CLT allows us to treat the sample mean of any random
phenomenon as a normal random variable, as long as our sample size
is big enough.

This will allow us to assign a measure of uncertainty to our sample
mean estimate, e.g. by constructing confidence intervals.

For small sample sizes, either the random phenomenon itself must
follow a normal distribution, or we need to use other (nonparametric)
statistical methods.
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Statistical Hypothesis Testing

Nearly all quantitative science is based around the idea of stating and
testing quantifiable hypotheses about study objects of interest.

Point Null Hypothesis Testing (PNHT) is the most common option in
virtually all applied disciplines.
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Statistical Hypothesis Testing

Basic recipe of PNHT:

(1) Identify parameter of interest.

(2) Define null hypothesis, H0, of no effect.

(3) Define a test statistic T (a function of the data) such that the larger
T is, the less consistent our data are with H0.

(4) Collect data and then compute test statistic: tobs .

(5) Compute p-value = Prp|T | ě tobs | H0q; if p-value small enough, then
conclude data are inconsistent with H0.

Example:

(1) Difference in mean response between treatment groups X and Y

(2) H0 : µX “ µY

(3) T “ standardized difference in sample means

(4) Collect data; compute tobs “ p sX ´ sY q{SE

(5) Calculating p-value requires knowing distribution of T given H0....
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A Closer Look at P-values

Formally, we define

p-value “ Prp|T | ě tobs | H0q, usually.

Interpretation: the p-value is the probability of observing a test
statistic as or more extreme than the one observed for our sample,
given that the null hypothesis is true.
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A Closer Look at P-values

Formally, we define

p-value “ Prp|T | ě tobs | H0q, usually.

Interpretation: the p-value is the probability of observing a test
statistic as or more extreme than the one observed for our sample,
given that the null hypothesis is true.

So a big p-value means the observed test statistic is “typical” under
H0. Therefore, the data are consistent with H0.

A small p-value means the observed test statistic is not “typical”
under H0. Therefore, the data are inconsistent with H0.
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A Closer Look at P-values

Formally, we define

p-value “ Prp|T | ě tobs | H0q, usually.

Recall definition of conditional probability:

Prp|T | ě tobs | H0 trueq “
Prp|T | ě tobs , and H0 trueq

PrpH0 trueq
.

With this in mind, how could the p-value be small?
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Z-test for Difference of Means

Proposition

If X and Y data come from normal distributions with the same known
variance σ2 but possibly different means, then the test statistic

T “ p sX ´ sY q{SE

also follows a normal distribution, with mean µX ´ µY and variance σ2{n,
where n denotes the sample size. Therefore, we can calculate

p-value “ Prp|T | ě tobs | H0q

since T is Np0, σ2{nq under H0.

Notice that we do not assume anything about µX and µY , the quantities
we are trying to study. Assuming H0 (i.e. hypothesis of no difference)
allows us to bypass any quantitative assumptions on these parameters.
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T-test for Difference of Means

In practice, we are never going to actually know the value of σ2. Instead,
we can estimate it by the sample variance. This will allow us to estimate
the SE.

Proposition

If X and Y are n data points coming from normal distributions with the
same (unknown) variance σ2 but possibly different means, then the test
statistic

T “ p sX ´ sY q{xSE

follows a Student-t distribution on pn ´ 2q degrees of freedom, with mean
µX ´ µY . Therefore, we can calculate

p-value “ Prp|T | ě tobs | H0q

since T is tn´2 (a known probability disribution) under H0.
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Student-t Random Variables

Student-t random variables look like normal distributions, but with
heavy tails; i.e. extreme events are more likely.
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Example: t-test (independent samples)

Suppose we have annual gross income figures (in $1000’s) for a
random sample of 10 British Columbians and 10 Albertans:

BC 44 45 46 34 48 42 68 44 52 51

AB 59 50 83 43 65 70 67 77 52 51

Can use an independent samples t-test to test the null hypothesis

H0 : µBC “ µAB .

Here, we assume that the BC subjects were sampled independently
from the AB subjects.

Must also check assumptions of t-test:

(1) independence of observations
(2) normality of data
(3) homogeneity of variances (homoskedasticity)
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Example: t-test (independent samples) in Jamovi

Enter data as two columns (income, province) in Jamovi

Click “Analyses” tab, then “T-Tests”, then “Independent Samples
T-Test”

Assign “Income” to dependent variable

Assign “Province” to grouping variable

Test statistic, degrees of freedom of (theoretical) Student-t random
variable, and p-value will appear in output on right side of screen

Click on appropriate boxes to produce tests/plots for assumptions,
confidence intervals, etc.
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Example: t-test (paired samples)

Suppose we have test scores for 9 first-year calculus students before
and after taking a weekend review workshop on pre-calculus topics
(algebra, geometry, trigonometry).

before 77 78 82 67 75 91 53 66 70

after 75 80 90 70 70 90 65 74 77

Can use a paired samples t-test to test the null hypothesis

H0 : µbefore “ µafter .

Here, we are measuring the same subjects at two different time
points; thus, their responses are dependent. A paired t-test accounts
for this lack of independence.

Must also check assumptions of this t-test:

(1) normality of data
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Example: t-test (paired samples) in Jamovi

Enter data as two columns (before, after) in Jamovi

Click “Analyses” tab, then “T-Tests”, then “Paired Samples T-Test”

Assign “before” and “after” to paired variables

Test statistic, degrees of freedom of (theoretical) Student-t random
variable, and p-value will appear in output on right side of screen

Click on appropriate boxes to produce tests/plots for assumptions,
confidence intervals, etc.
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Testing for Equality of Variances

Equality of variances is an assumption for an unpaired t-test.

But how can we rigorously test if two variances are (statistically)
equal?

Sample 1 51 53 49 40 55 56 49 48 42 51

Sample 2 47 45 35 50 70 62 49 37 57 63

Can calculate sample variances of the two samples: use formula or
use “Descriptives” tab in Jamovi.

S1 “ 5.15 and S2 “ 11.4

But are these statistically different? Remember: sample variances are
random variables. So is this observed difference in sample variances
meaningful, given the inherent randomness of the data?
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F-test for Inequality of Variances

Proposition

Suppose we draw n1 sample points from the random variable X and n2
sample points from the random variable Y . If these X and Y data come
from normal distributions with possibly different means and possibly
different variances σ21 and σ22, then the test statistic

T “
S2
1

S2
2

follows a Fisher-F distribution on pn1 ´ 1q numerator degrees of freedom
and pn2 ´ 1q denominator degrees of freedom under the null hypothesis

H0 : σ21 “ σ22.

As before, small p-value should reflect when T is an “extreme” value
under H0. This happens if S1 ąą S2 or if S1 ăă S2.

Ed Kroc (UBC) EPSE 592 January 23, 2020 28 / 39



Testing for Equality of Variances

Back to our example:

Sample 1 51 53 49 40 55 56 49 48 42 51

Sample 2 47 45 35 50 70 62 49 37 57 63

S1 “ 5.15 and S2 “ 11.4

In Jamovi, follow the procedure for an independent samples t-test
from before.

Under “Assumption Checks,” click the box for “Equality of variances.”

Produces Levene’s Test, (essentially) the test statistic S2
1 {S

2
2

compared against its theoretical F distribution under H0.
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F -Tests

F -tests always take the form of a ratio of variances.

When the two variances describe normal data, then the ratio of
sample variances is a Fisher-F random variable.

Will rely heavily on this all term: we will usually assume model errors
are normally distributed. So can use F -tests to compare if the
variance of one model is significantly less than another model (i.e. if
one model explains more of the variation in the data than another
model).
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Summary of statistical tests so far...

Z -test for testing difference of two group means from (approx.)
normal data with known variance.

T -test for testing difference of two group means from (approx.)
normal data with unknown variance. Paired and unpaired versions.

F -test for testing difference of two group variances from (approx.)
normal data.

Note: the CLT implies that we can use all these tests for non-normal data
as long as we have large enough sample sizes.
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Summary of statistical tests so far...

Z -test for testing difference of two group means from (approx.)
normal data with known variance.

T -test for testing difference of two group means from (approx.)
normal data with unknown variance. Paired and unpaired versions.

F -test for testing difference of two group variances from (approx.)
normal data.

Note: the CLT implies that we can use all these tests for non-normal data
as long as we have large enough sample sizes.

What about when we want to test for a difference between more than
two group means?
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Example: three experimental groups of interest

Suppose we are interested in studying how amount of higher education
correlates with self-reported anxiety levels. We have a survey designed to
measure anxiety and give it to 18 people at UBC: 6 who have obtained
Bachelor’s degrees, 6 who have obtained Master’s degrees, and 6 who
have obtained PhDs (chosen how?).

Bachelor’s Master’s PhD

6.2 6.2 6.9
5.8 6.9 9.0
6.0 6.2 7.7
5.9 7.7 9.1
6.6 6.8 8.3
6.2 7.9 8.0

Table: Self-reported anxiety levels, 10 point scale. 18 respondents.
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Example: three experimental groups of interest

Could perform 3 independent-samples t-tests to test the 3 null
hypotheses:

H0,1 : µB “ µM

H0,2 : µM “ µP

H0,3 : µB “ µP
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Example: three experimental groups of interest

Could perform 3 independent-samples t-tests to test the 3 null
hypotheses:

H0,1 : µB “ µM ùñ p-value ă 0.05
H0,2 : µM “ µP ùñ p-value ă 0.05
H0,3 : µB “ µP ùñ p-value ăă 0.05

But what about inflated Type I error?
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Type I and Type II Errors

Recall: when p-value small, conclude data inconsistent with H0.

Recall: when p-value large, conclude data consistent with H0.

Whenever we make a decision about a hypothesis based on a p-value,
we have a chance of making an error.

H0 true H0 false

data inconsistent
with H0

Type I error
false positive

Correct decision
true positive

data consistent
with H0

Correct decision
true negative

Type II error
false negative
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Type I and Type II Errors

Traditionally, we set a predetermined significance level, α, such that

PrpType I errorq “ Prpp ´ value ă α | H0 trueq “ α.

Then α, sample size, variability, and choice of test determine

PrpType II errorq “ Prpp ´ value ą α | H0 falseq “ β.

The confidence level, or specificity, of a test is defined as

Prpp ´ value ą α | H0 trueq “ 1´ α.

The power, or sensitivity, of a test is defined as

Prpp ´ value ă α | H0 falseq “ 1´ β.
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Type I and Type II Errors

In practice, α “ 0.05 is a common choice.

Note: all of 1´ α, β, and 1´ β are determined once α has been
fixed, the data have been collected, and the choice of analysis made.

Good studies will strive to have 1´ β ě 0.80. Most studies will have
much lower power.

Given H0 true Given H0 false

Pr(data inconsistent
with H0 | ¨ ¨ ¨ )

α p1´ βq

Pr(data consistent
with H0 | ¨ ¨ ¨ )

p1´ αq β
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Multiple Testing

Each time we conduct a statistical test of hypothesis, we have a
chance of committing a Type I or Type II error.

The choice of α controls our chance of Type I error for a single test.

Thus, if our study requires more than one test, each one has a chance
of error.

Thus, if our study requires more than one test, we should be
concerned with the family-wise error rate: the probability of
committing at least one Type I error.
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