# EPSE 592: Design \& Analysis of Experiments 

Ed Kroc<br>University of British Columbia<br>ed.kroc@ubc.ca

January 16, 2020

## Last time

- Intro to experimental design
- Basics of probability
- Conditional probability


## Conditional Probability

- In general, given that an event $F$ has occurred, the probability that another event $E$ occurs is called the conditional probability of $E$ given $F$.

- Notation and formula:

$$
\operatorname{Pr}(E \mid F)=\frac{\operatorname{Pr}(E \cap F)}{\operatorname{Pr}(F)}=\frac{\operatorname{Pr}(E \text { and } F)}{\operatorname{Pr}(F)}
$$

## Independence of Events

## Definition

Two events $E$ and $F$ are said to be independent if and only if $\operatorname{Pr}(E \mid F)=\operatorname{Pr}(E)$ or $\operatorname{Pr}(F \mid E)=\operatorname{Pr}(F)$.

- By definition of conditional probability then, we have

$$
\operatorname{Pr}(E \cap F)=\operatorname{Pr}(E) \cdot \operatorname{Pr}(F) \quad \text { if and only if } E, F \text { are independent. }
$$

- This definition matches with our intuition: if two events are independent, then the fact that one event happens should not have any affect on how likely the other event is to happen.


## The Prosecutor's Fallacy

The Prosecutor's Fallacy is a common probability misconception: the fallacy is thinking that $\operatorname{Pr}(A \cap B)$ is the same as $\operatorname{Pr}(A \mid B)$.

- This is obviously false! Only true if $\operatorname{Pr}(B)=1$ or if $\operatorname{Pr}(A \cap B)=0$. Recall that

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

- This fallacy is quite common and can have many distressing consequences...


## The Case of Sally Clark

- In 1998, Sally Clark was accused of murdering her two infant sons. One died in 1996 at eleven weeks old. The second died a year later at eight weeks of age.
- Sir Roy Meadow, pediatrician and expert witness for the prosecution, testified that the chance of two children in the same family dying from Sudden Infant Death Syndrome (SIDS) was about $(1 / 8500)^{2}$, or 1 in 73 million.
- On the strength of this testimony alone, Clark was convicted in 1999. The Royal Statistical Society then pointed out the flaws in the argument. What are they?


## The Case of Sally Clark

- Flaw \#1: The events of two siblings dying from SIDS are not independent. There is a genetic component! In reality, the probability of two children from the same family dying of SIDS is much closer to $1 / 8500$ than to $(1 / 8500)^{2}$.
- Flaw \#2: Meadow confused the conditional and unconditional probabilities (the Prosecutor's Fallacy).

Let $I$ : event that Clark is innocent of murder, $E$ : event of two dead children (the evidence).

We know that in general,

$$
\operatorname{Pr}(I \mid E) \neq \operatorname{Pr}(E \text { and } I)
$$

## The Case of Sally Clark

Now,

$$
\begin{aligned}
\operatorname{Pr}(I \mid E) & =\frac{\operatorname{Pr}(I \text { and } E)}{\operatorname{Pr}(E)} \\
& =\frac{\operatorname{Pr}(I \text { and } E)}{\operatorname{Pr}\left(\{I \text { and } E\} \text { or }\left\{I^{c} \text { and } E\right\}\right)} \\
& =\frac{\operatorname{Pr}(I \text { and } E)}{\operatorname{Pr}(I \text { and } E)+\operatorname{Pr}\left(I^{c} \text { and } E\right)}
\end{aligned}
$$

What are the events $I$ and $E$ and $I^{C}$ and $E$ ?

- I and $E$ is the event of the two chidren dying by SIDS.
- $I^{c}$ and $E$ is the event of the two children dying by murder.

Double SIDS is rare, but double murder is much, much rarer! So,

$$
\operatorname{Pr}\left(I^{c} \text { and } E\right) \ll \operatorname{Pr}(I \text { and } E) .
$$

## The Case of Sally Clark

$$
\operatorname{Pr}\left(I^{c} \text { and } E\right) \ll \operatorname{Pr}(I \text { and } E)
$$

means:

$$
\begin{gathered}
\operatorname{Pr}(I \text { and } E)+\operatorname{Pr}\left(I^{c} \text { and } E\right) \ll \operatorname{Pr}(I \text { and } E)+\operatorname{Pr}(I \text { and } E) \\
\frac{1}{\operatorname{Pr}(I \text { and } E)+\operatorname{Pr}\left(I^{c} \text { and } E\right)} \gg \frac{1}{\operatorname{Pr}(I \text { and } E)+\operatorname{Pr}(I \text { and } E)} \\
\frac{\operatorname{Pr}(I \text { and } E)}{\operatorname{Pr}(I \text { and } E)+\operatorname{Pr}\left(I^{c} \text { and } E\right)} \gg \frac{\operatorname{Pr}(I \text { and } E)}{\operatorname{Pr}(I \text { and } E)+\operatorname{Pr}(I \text { and } E)} \\
\operatorname{Pr}(I \mid E)
\end{gathered} \frac{1}{2}
$$

## The Case of Sally Clark

$$
\operatorname{Pr}\left(I^{c} \text { and } E\right) \ll \operatorname{Pr}(I \text { and } E)
$$

means:

$$
\begin{aligned}
\operatorname{Pr}(I \mid E) & =\frac{\operatorname{Pr}(I \text { and } E)}{\operatorname{Pr}(I \text { and } E)+\operatorname{Pr}\left(I^{c} \text { and } E\right)} \\
& \gg \frac{\operatorname{Pr}(I \text { and } E)}{\operatorname{Pr}(I \text { and } E)+\operatorname{Pr}(I \text { and } E)}=\frac{1}{2}
\end{aligned}
$$

So, $\operatorname{Pr}(I \mid E) \approx 1$ !
Moral of the story 1: circumstantial evidence of a rare event is very weak evidence.
Moral of the story 2: conditional information is radically different from unconditional information.

## Today

- Random variables
- Means (expectations), variance, standard deviation
- Bernoulli, Binomial, and Normal random variables
- Sample statistics (standard errors, confidence intervals, CLT)
- Hypothesis testing and p-values


## Random Variables

## Definition

A random variable is a function that maps events in a sample space to the real numbers. We use uppercase letters to denote a random variable, and lowercase letters to denote sample realizations of that random variable.

## Random Variables

## Definition

A random variable is a function that maps events in a sample space to the real numbers. We use uppercase letters to denote a random variable, and lowercase letters to denote sample realizations of that random variable.

Example: Toss a fair coin three times:
$S=\{H H H, H H T, H T H, T H H, H T T, T H T, T T H, T T T\}$
We can define a random variable $X$ to be the number of heads observed in the three tosses:

| Event | HHH | HHT | HTH | THH | HTT | THT | TTH | TTT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $X=x$ | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 0 |

## Random Variables

- All r.v.'s come equipped with a cumulative distribution function (CDF) that lets us figure out probabilties of events.
- The CDF simply accumulates probabilties up to a certain value:

$$
\operatorname{Pr}(X \leqslant x)
$$

where $X$ is the random variable, and $x \in \mathbb{R}$.


## Random Variables

- Discrete r.v.'s also have a probability mass function (PMF) that tells us the probabilities of single events:

$$
\operatorname{Pr}(X=x)
$$



## Random Variables

- Continuous r.v.'s instead have a probability density function (PDF), denoted $f(x)$, that allows us to write:

$$
\operatorname{Pr}(a \leqslant X \leqslant b)=\int_{a}^{b} f(x) d x
$$

for any $a, b \in \mathbb{R}$.


## Expectation of a Random Variable

## Definition

The expectation of $X$ (discrete) is given by

$$
\mathbb{E}(X)=\sum_{x} x \cdot \operatorname{Pr}(X=x)
$$

The expectation of $X$ (continuous) is given by

$$
\mathbb{E}(X)=\int_{-\infty}^{\infty} x \cdot f(x) d x
$$

The expectation of $X$ is also referred to as the expected value of $X$ or the mean of $X$. We often denote the mean by $\mu$ or $\mu_{X}$.

Note: the expectation generalizes the idea of the simple average of a bunch of numbers.

## Variance and Standard Deviation of a Random Variable

## Definition

We define the variance of a r.v. $X$ as

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mu)^{2}\right]
$$

For $X$ discrete, this is

$$
\operatorname{Var}(X)=\sum_{x}(x-\mu)^{2} \operatorname{Pr}(X=x)
$$

For $X$ continuous, this is

$$
\operatorname{Var}(X)=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x
$$

Note: the variance of a random variable quantifies how likely it is that the random variable takes on values away from its mean/expectation.

## Variance and Standard Deviation of a Random Variable

## Definition

The standard deviation of $X$ is

$$
\mathrm{SD}(X)=\sqrt{\operatorname{Var}(X)}
$$

The standard deviation has the same units as the random variable itself.

- We often denote the variance of $X$ by $\sigma^{2}$ or $\sigma_{X}^{2}$, and the standard deviation of $X$ by $\sigma$ or $\sigma_{X}$.
- Standard deviations give the same information as variances (just different units).
- Standard deviations are easier to interpret, but variances are easier to work with mathematically.


## Bernoulli trials

- A Bernoulli trial is a random experiment that gives only one of two outcomes, usually referred to as "success" and "failure".
Examples:
- Toss a fair coin once: "success" if a head is tossed, "failure" if a tail is tossed.
- Medical diagnostic: "success" if patient has disease, "faliure" if patient is healthy.
- The number of "successes" in a Bernoulli trial (either 0 or 1 ) is a Bernoulli random variable with parameter $p$, where $p$ is the probability of the "success" outcome, $0 \leqslant p \leqslant 1$. We use the notation $X \sim \operatorname{Bernoulli}(p)$ or $X \sim \operatorname{Ber}(p)$ to denote that $X$ is distributed according to a Bernoulli random variable with parameter $p$.


## Binomial Random Variables

- A Binomial experiment consists of $n$ (fixed in advance) identical and independent Bernoulli trials.

Examples:

- Toss a fair coin $n=10$ times: "success" if a head is tossed, "failure" if a tail is tossed.
- Medical diagnostics: run the same test on $n=100$ patients with equal chance of disease: "success" if patient has disease, "faliure" if patient is healthy.
- Let the $n$ Bernoulli trials be given by $X_{1}, X_{2}, \ldots, X_{n}$, where $X_{i} \sim \operatorname{Ber}(p)$.
- Define $Y=X_{1}+X_{2}+\cdots+X_{n}$.
$Y$ is the total number of successes out of the $n$ trials.
$Y$ is a Binomial random variable with parameters $n$ and $p$, denoted $Y \sim \operatorname{Bin}(n, p)$.


## Normal Random Variables

- Recall that a probability density function (PDF) for a continuous random variable is a function that tells us how to calculate the likelihood of different outcomes for the random variable.
- A random variable $X$ that follows the Normal, or Gaussian, distribution has a PDF given by

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}},-\infty<x<\infty
$$

Definition of PDF implies: $\operatorname{Pr}(a \leqslant X \leqslant b)=\int_{a}^{b} f(x) d x$.

- We write $X \sim N\left(\mu, \sigma^{2}\right)$, where $\mu$ is the mean parameter, and $\sigma^{2}$ is the variance parameter.


## Normal Random Variables

The Normal density is the classic "bell curve", and is perfectly symmetrical about the mean $\mu$.


- A standard Normal random variable $Z$ is a Normal random variable with $\mu=0$ and $\sigma^{2}=1: Z \sim N(0,1)$.


## Standardizing Random Variables

## Proposition

Let $X \sim N\left(\mu, \sigma^{2}\right)$. Then the random variable $Z=\frac{X-\mu}{\sigma}$ is a standard Normal random variable; i.e. $Z \sim N(0,1)$.

- In general, the process of transforming a random variable by subtracting its mean and then dividing by its standard deviation is called standardizing.
- The resulting transformed random variable is called a standardized random variable. It will always have mean 0 and standard deviation 1.
- This allows us to make meaningful comparisons that do not depend on units of measurement.


## Applications of Normal Random Variables

- The Central Limit Theorem forms the backbone of the theory behind many classical analytical tools in statistics:
- Tests of hypotheses about sample means (e.g. z-tests and t-tests)
- Analysis of variance (ANOVA)
- Linear regression
- The Normal distribution is often applied to analyze errors in measurement (e.g. random errors in making astronomical observations)
- The Normal distribution is often a great approximation to real world variables, e.g. height, weight, body temperature.
- The Normal distribution is used to define a bunch of other random variables with further statistical and real world applications, e.g.:
- Student's t-distribution
- Chi-squared distribution
- Fisher F-distribution


## Sample Statistics

- In practice, we study a random variable by observing its values on only a sample.
- Studying this sample allows us to infer properties of the actual random variable if the sample is random and representative.
- This is basically what applied statistics is all about!


## Sample Statistics

- We can approximate a r.v.'s PMF or PDF by plotting a histogram of our sample data.


Visit: http://www.shodor.org/interactivate/activities/NormalDistribution/

## Sample Statistics

- We can get a sense of the "typical" value of our r.v. by calculating a sample mean, sample median, or sample mode.
- Let $\left\{X_{1}, \ldots, X_{n}\right\}$ denote a random sample of $n$ independent observations from the random variable $X$. We define the sample mean by:

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

- sample median $=50$ th percentile of sample data
- sample mode $=$ most commonly observed value in sample data
- Rememeber: these can all be different!


## Sample Statistics

- We can get a sense of the spread or dispersion (variability) of our r.v. by calculating a sample variance.
- Let $\left\{X_{1}, \ldots, X_{n}\right\}$ denote a random sample of $n$ independent observations from the random variable $X$. We define the sample variance by:

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

## Sample Statistics vs. Properties of Random Variables

- Although the definitions of expectation and sample mean, and of variance and sample variance, look very similar, they are fundamentally different.
- Sample mean and variance are functions of the data/sample. Different samples will generate different values for sample mean/variance even if the samples are from the same population.
- Expectactions and variances of random variables are idealized quantities. They are inherent properties of the random phenomenon we are studying. We usually cannot calculate them in practice; we can only estimate them via our sample approximations.


## Standard Errors

- Because sample statistics are random (i.e. not fixed) quantities, they are genuine random variables on their own!
- Thus, they have expectations, variances, std. devs. of their own.
- Terminology: the standard error of a sample statistic is simply its standard deviation.
- If $T$ denotes a sample statistic, then we usually write $S E(T)$ to denote its standard error.
- In practice, standard errors are functions of the sample size and the original variability in the population from which we sampled our data.


## Confidence Intervals

- A confidence interval is a way of summarizing a sample statistic (e.g. sample mean) and its standard error at once.
- An (approximate) $95 \%$ confidence interval for the expectation (population mean), $\mu_{X}$, of a continuous random variable $X$ from a random sample $\left\{X_{1}, \ldots, X_{n}\right\}$, for large $n$, is

$$
[\bar{X}-2 \cdot S E(\bar{X}), \bar{X}+2 \cdot S E(\bar{X})]
$$

- Notice, this Cl depends on the sample; i.e., it is a statistic.
- Interpretation: if we resample 100 times and calculate the $95 \%$ confidence interval for each new sample, then approximately 95 of those Cls will contain the true (unknown) population mean.


## Central Limit Theorem

## Central Limit Theorem (CLT)

Let $\left\{X_{1}, \ldots, X_{n}\right\}$ denote a random sample of $n$ independent observations from a common distribution with finite mean $\mu$ and finite variance $\sigma^{2}$. Recall the sample mean is given by

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Then, for $n$ large, $\bar{X}$ is approximately distributed as $N\left(\mu, \sigma^{2} / n\right)$.

- This is one of the most important theorems of classical statistics. Tells us all about how the sample mean behaves for an independent random sample from any common distribution with finite mean and variance.


## Central Limit Theorem: example

Histogram of random sample of size 100 from a very skewed (Gamma) random variable.


Sample mean is 0.366 for this particular set of 100 sample data points.

## Central Limit Theorem: example continued

Histogram of the sample means of 1000 random samples (each of size 100) from the same very skewed (Gamma) random variable.


Notice the histogram looks quite Normal! (CLT at work)

## Central Limit Theorem

- Moral: CLT allows us to treat the sample mean of any random phenomenon as a normal random variable, as long as our sample size is big enough.
- This will allow us to assign a measure of uncertainty to our sample mean estimate, e.g. by constructing confidence intervals.
- For small sample sizes, either the random phenomenon itself must follow a normal distribution, or we need to use other (nonparametric) statistical methods.


## Statistical Hypothesis Testing

- Nearly all quantitative science is based around the idea of stating and testing quantifiable hypotheses about study objects of interest.
- Point Null Hypothesis Testing (PNHT) is the most common option in virtually all applied disciplines.


## Statistical Hypothesis Testing

Basic recipe of PNHT:
(1) Identify parameter of interest.
(2) Define null hypothesis, $H_{0}$, of no effect.
(3) Define a test statistic $T$ (a function of the data) such that the larger $T$ is, the less consistent our data are with $H_{0}$.
(4) Collect data and then compute test statistic: $t_{o b s}$.
(5) Compute p-value $=\operatorname{Pr}\left(|T| \geqslant t_{o b s} \mid H_{0}\right)$; if p-value small enough, then conclude data are inconsistent with $H_{0}$.
Example:
(1) Difference in mean response between treatment groups $X$ and $Y$
(2) $H_{0}: \mu_{X}=\mu_{Y}$
(3) $T=$ standardized difference in sample means
(4) Collect data; compute $t_{o b s}=(\bar{X}-\bar{Y}) / S E$
(5) Calculating p -value requires knowing distribution of $T$ given $H_{0} \ldots$.

## A Closer Look at P-values

- Under $H_{0}$, our test statistic follows some distribution (plotted).
- The $\mathbf{p}$-value is the area under the test statistic's PDF (or PMF) that is more extreme than the observed test statisic from the sample.



## A Closer Look at P-values

- Formally, we define
p-value $=\operatorname{Pr}\left(\right.$ test stat. as or more extreme than observed $\mid H_{0}$ true $)$ $=\operatorname{Pr}\left(T \geqslant t_{o b s} \mid H_{0}\right)$, usually.
- But think about this: the evidence that we observe is captured in the value of $t_{o b s}$.
- The hypothesis we want to make a decision about is $H_{0}$.
- Think about the Sally Clark case: we would typically evaluate evidence for a hypothesis as $\operatorname{Pr}\left(H_{0} \mid t_{o b s}\right)$.
- But this is a very different conditional probability than what a p-value is!


## A Closer Look at P-values

- Formally, we define

$$
\text { p-value }=\operatorname{Pr}\left(T \geqslant t_{o b s} \mid H_{0}\right), \text { usually. }
$$

- Interpretation: the p -value is the probability of observing a test statistic as or more extreme than the one observed for our sample, given that the null hypothesis is true.



## A Closer Look at P-values

- Formally, we define

$$
\text { p-value }=\operatorname{Pr}\left(T \geqslant t_{o b s} \mid H_{0}\right), \text { usually. }
$$

- Interpretation: the p -value is the probability of observing a test statistic as or more extreme than the one observed for our sample, given that the null hypothesis is true.
- So a big p-value means the observed test statistic is "typical" under $H_{0}$. Therefore, the data are consistent with $H_{0}$.
- A small p-value means the observed test statistic is not "typical" under $H_{0}$. Therefore, the data are inconsistent with $H_{0}$.


## A Closer Look at P-values

- Formally, we define

$$
\text { p-value }=\operatorname{Pr}\left(T \geqslant t_{o b s} \mid H_{0}\right), \text { usually. }
$$

- Recall definition of conditional probability:

$$
\operatorname{Pr}\left(T \geqslant t_{\text {obs }} \mid H_{0} \text { true }\right)=\frac{\operatorname{Pr}\left(T \geqslant t_{\text {obs }}, \text { and } H_{0} \text { true }\right)}{\operatorname{Pr}\left(H_{0} \text { true }\right)} .
$$

- With this in mind, how could the p-value be small?

