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Last time

Intro to experimental design

Basics of probability

Conditional probability
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Conditional Probability

In general, given that an event F has occurred, the probability that
another event E occurs is called the conditional probability of E given
F .

Notation and formula:

PrpE | F q “
PrpE X F q

PrpF q
“

PrpE and F q

PrpF q
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Independence of Events

Definition

Two events E and F are said to be independent if and only if
PrpE | F q “ PrpE q or PrpF | E q “ PrpF q.

By definition of conditional probability then, we have

PrpE X F q “ PrpE q ¨ PrpF q if and only if E , F are independent.

This definition matches with our intuition: if two events are
independent, then the fact that one event happens should not have
any affect on how likely the other event is to happen.
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The Prosecutor’s Fallacy

The Prosecutor’s Fallacy is a common probability misconception: the
fallacy is thinking that PrpAX Bq is the same as PrpA | Bq.

This is obviously false! Only true if PrpBq “ 1 or if PrpAX Bq “ 0.
Recall that

PrpA | Bq “
PrpAX Bq

PrpBq

This fallacy is quite common and can have many distressing
consequences...
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The Case of Sally Clark

In 1998, Sally Clark was accused of murdering her two infant sons.
One died in 1996 at eleven weeks old. The second died a year later at
eight weeks of age.

Sir Roy Meadow, pediatrician and expert witness for the prosecution,
testified that the chance of two children in the same family dying
from Sudden Infant Death Syndrome (SIDS) was about p1{8500q2, or
1 in 73 million.

On the strength of this testimony alone, Clark was convicted in 1999.
The Royal Statistical Society then pointed out the flaws in the
argument. What are they?
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The Case of Sally Clark

Flaw #1: The events of two siblings dying from SIDS are not
independent. There is a genetic component! In reality, the probability
of two children from the same family dying of SIDS is much closer to
1/8500 than to p1{8500q2.

Flaw #2: Meadow confused the conditional and unconditional
probabilities (the Prosecutor’s Fallacy).

Let I : event that Clark is innocent of murder, E : event of two dead
children (the evidence).

We know that in general,

PrpI | E q ‰ PrpE and I q.
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The Case of Sally Clark

Now,

PrpI | E q “
PrpI and E q

PrpE q

“
PrpI and E q

PrptI and Eu or tI c and Euq

“
PrpI and E q

PrpI and E q ` PrpI c and E q

What are the events I and E and I c and E?

‚ I and E is the event of the two chidren dying by SIDS.
‚ I c and E is the event of the two children dying by murder.

Double SIDS is rare, but double murder is much, much rarer! So,

PrpI c and E q ! PrpI and E q.
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The Case of Sally Clark

PrpI c and E q ! PrpI and E q

means:

PrpI and E q ` PrpI c and E q ! PrpI and E q ` PrpI and E q

1

PrpI and E q ` PrpI c and E q
"

1

PrpI and E q ` PrpI and E q

PrpI and E q

PrpI and E q ` PrpI c and E q
"

PrpI and E q

PrpI and E q ` PrpI and E q

PrpI | E q "
1

2
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The Case of Sally Clark

PrpI c and E q ! PrpI and E q

means:

PrpI | E q “
PrpI and E q

PrpI and E q ` PrpI c and E q

"
PrpI and E q

PrpI and E q ` PrpI and E q
“

1

2

So, PrpI | E q « 1!

Moral of the story 1: circumstantial evidence of a rare event is very
weak evidence.
Moral of the story 2: conditional information is radically different
from unconditional information.
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Today

Random variables

Means (expectations), variance, standard deviation

Bernoulli, Binomial, and Normal random variables

Sample statistics (standard errors, confidence intervals, CLT)

Hypothesis testing and p-values
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Random Variables

Definition

A random variable is a function that maps events in a sample space to
the real numbers. We use uppercase letters to denote a random variable,
and lowercase letters to denote sample realizations of that random variable.

Example: Toss a fair coin three times:

S “ tHHH, HHT , HTH, THH, HTT , THT , TTH, TTT u

We can define a random variable X to be the number of heads observed in
the three tosses:

Event HHH HHT HTH THH HTT THT TTH TTT

X “ x 3 2 2 2 1 1 1 0
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Random Variables

All r.v.’s come equipped with a cumulative distribution function
(CDF) that lets us figure out probabilties of events.

The CDF simply accumulates probabilties up to a certain value:

PrpX ď xq,

where X is the random variable, and x P R.
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Random Variables

Discrete r.v.’s also have a probability mass function (PMF) that tells
us the probabilities of single events:

PrpX “ xq.
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Random Variables

Continuous r.v.’s instead have a probability density function (PDF),
denoted f pxq, that allows us to write:

Prpa ď X ď bq “

ż b

a
f pxqdx ,

for any a, b P R.
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Expectation of a Random Variable

Definition

The expectation of X (discrete) is given by

EpX q “
ÿ

x

x ¨ PrpX “ xq.

The expectation of X (continuous) is given by

EpX q “
ż 8

´8

x ¨ f pxqdx .

The expectation of X is also referred to as the expected value of X or
the mean of X . We often denote the mean by µ or µX .

Note: the expectation generalizes the idea of the simple average of a
bunch of numbers.
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Variance and Standard Deviation of a Random Variable

Definition

We define the variance of a r.v. X as

VarpX q “ ErpX ´ µq2s.

For X discrete, this is

VarpX q “
ÿ

x

px ´ µq2PrpX “ xq.

For X continuous, this is

VarpX q “

ż 8

´8

px ´ µq2f pxqdx .

Note: the variance of a random variable quantifies how likely it is that the
random variable takes on values away from its mean/expectation.

Ed Kroc (UBC) EPSE 592 January 16, 2020 17 / 42



Variance and Standard Deviation of a Random Variable

Definition

The standard deviation of X is

SDpX q “
a

VarpX q.

The standard deviation has the same units as the random variable itself.

We often denote the variance of X by σ2 or σ2X , and the standard
deviation of X by σ or σX .

Standard deviations give the same information as variances (just
different units).

Standard deviations are easier to interpret, but variances are easier to
work with mathematically.
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Bernoulli trials

A Bernoulli trial is a random experiment that gives only one of two
outcomes, usually referred to as “success” and “failure”.

Examples:

Toss a fair coin once: “success” if a head is tossed, “failure” if a tail is
tossed.
Medical diagnostic: “success” if patient has disease, “faliure” if patient
is healthy.

The number of “successes” in a Bernoulli trial (either 0 or 1) is a
Bernoulli random variable with parameter p, where p is the probability
of the “success” outcome, 0 ď p ď 1. We use the notation
X „ Bernoullippq or X „ Berppq to denote that X is distributed
according to a Bernoulli random variable with parameter p.
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Binomial Random Variables

A Binomial experiment consists of n (fixed in advance) identical and
independent Bernoulli trials.

Examples:

Toss a fair coin n “ 10 times: “success” if a head is tossed, “failure” if
a tail is tossed.
Medical diagnostics: run the same test on n “ 100 patients with equal
chance of disease: “success” if patient has disease, “faliure” if patient
is healthy.

Let the n Bernoulli trials be given by X1,X2, . . . ,Xn, where
Xi „ Berppq.

Define Y “ X1 ` X2 ` ¨ ¨ ¨ ` Xn.
Y is the total number of successes out of the n trials.
Y is a Binomial random variable with parameters n and p, denoted
Y „ Binpn, pq.
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Normal Random Variables

Recall that a probability density function (PDF) for a continuous
random variable is a function that tells us how to calculate the
likelihood of different outcomes for the random variable.

A random variable X that follows the Normal, or Gaussian,
distribution has a PDF given by

f pxq “
1

?
2πσ

e´
px´µq2

2σ2 , ´8 ă x ă 8.

Definition of PDF implies: Prpa ď X ď bq “
şb
a f pxqdx .

We write X „ Npµ, σ2q, where µ is the mean parameter, and σ2 is
the variance parameter.
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Normal Random Variables

The Normal density is the classic “bell curve”, and is perfectly symmetrical
about the mean µ.

A standard Normal random variable Z is a Normal random variable
with µ “ 0 and σ2 “ 1: Z „ Np0, 1q.
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Standardizing Random Variables

Proposition

Let X „ Npµ, σ2q. Then the random variable Z “ X´µ
σ is a standard

Normal random variable; i.e. Z „ Np0, 1q.

In general, the process of transforming a random variable by
subtracting its mean and then dividing by its standard deviation is
called standardizing.

The resulting transformed random variable is called a standardized
random variable. It will always have mean 0 and standard deviation 1.

This allows us to make meaningful comparisons that do not depend
on units of measurement.
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Applications of Normal Random Variables

The Central Limit Theorem forms the backbone of the theory behind
many classical analytical tools in statistics:

Tests of hypotheses about sample means (e.g. z-tests and t-tests)
Analysis of variance (ANOVA)
Linear regression

The Normal distribution is often applied to analyze errors in
measurement (e.g. random errors in making astronomical
observations)

The Normal distribution is often a great approximation to real world
variables, e.g. height, weight, body temperature.

The Normal distribution is used to define a bunch of other random
variables with further statistical and real world applications, e.g.:

Student’s t-distribution
Chi-squared distribution
Fisher F-distribution
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Sample Statistics

In practice, we study a random variable by observing its values on
only a sample.

Studying this sample allows us to infer properties of the actual
random variable if the sample is random and representative.

This is basically what applied statistics is all about!
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Sample Statistics

We can approximate a r.v.’s PMF or PDF by plotting a histogram of
our sample data.

Visit: http://www.shodor.org/interactivate/activities/NormalDistribution/
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Sample Statistics

We can get a sense of the “typical” value of our r.v. by calculating a
sample mean, sample median, or sample mode.

Let tX1, . . . ,Xnu denote a random sample of n independent
observations from the random variable X . We define the sample
mean by:

sX “
1

n

n
ÿ

i“1

Xi .

sample median = 50th percentile of sample data

sample mode = most commonly observed value in sample data

Rememeber: these can all be different!
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Sample Statistics

We can get a sense of the spread or dispersion (variability) of our r.v.
by calculating a sample variance.

Let tX1, . . . ,Xnu denote a random sample of n independent
observations from the random variable X . We define the sample
variance by:

S2 “
1

n ´ 1

n
ÿ

i“1

pXi ´
sX q2.
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Sample Statistics vs. Properties of Random Variables

Although the definitions of expectation and sample mean, and of
variance and sample variance, look very similar, they are
fundamentally different.

Sample mean and variance are functions of the data/sample. Different
samples will generate different values for sample mean/variance even if
the samples are from the same population.

Expectactions and variances of random variables are idealized
quantities. They are inherent properties of the random phenomenon we
are studying. We usually cannot calculate them in practice; we can
only estimate them via our sample approximations.
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Standard Errors

Because sample statistics are random (i.e. not fixed) quantities, they
are genuine random variables on their own!

Thus, they have expectations, variances, std. devs. of their own.

Terminology: the standard error of a sample statistic is simply its
standard deviation.

If T denotes a sample statistic, then we usually write SE pT q to
denote its standard error.

In practice, standard errors are functions of the sample size and the
original variability in the population from which we sampled our data.
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Confidence Intervals

A confidence interval is a way of summarizing a sample statistic (e.g.
sample mean) and its standard error at once.

An (approximate) 95% confidence interval for the expectation
(population mean), µX , of a continuous random variable X from a
random sample tX1, . . . ,Xnu, for large n, is

r sX ´ 2 ¨ SE p sX q, sX ` 2 ¨ SE p sX qs

Notice, this CI depends on the sample; i.e., it is a statistic.

Interpretation: if we resample 100 times and calculate the 95%
confidence interval for each new sample, then approximately 95 of
those CIs will contain the true (unknown) population mean.
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Central Limit Theorem

Central Limit Theorem (CLT)

Let tX1, . . . ,Xnu denote a random sample of n independent observations
from a common distribution with finite mean µ and finite variance σ2.
Recall the sample mean is given by

sX “
1

n

n
ÿ

i“1

Xi .

Then, for n large, sX is approximately distributed as Npµ, σ2{nq.

This is one of the most important theorems of classical statistics.
Tells us all about how the sample mean behaves for an independent
random sample from any common distribution with finite mean and
variance.
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Central Limit Theorem: example

Histogram of random sample of size 100 from a very skewed (Gamma)
random variable.

Sample mean is 0.366 for this particular set of 100 sample data points.
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Central Limit Theorem: example continued

Histogram of the sample means of 1000 random samples (each of size
100) from the same very skewed (Gamma) random variable.

Notice the histogram looks quite Normal! (CLT at work)
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Central Limit Theorem

Moral: CLT allows us to treat the sample mean of any random
phenomenon as a normal random variable, as long as our sample size
is big enough.

This will allow us to assign a measure of uncertainty to our sample
mean estimate, e.g. by constructing confidence intervals.

For small sample sizes, either the random phenomenon itself must
follow a normal distribution, or we need to use other (nonparametric)
statistical methods.
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Statistical Hypothesis Testing

Nearly all quantitative science is based around the idea of stating and
testing quantifiable hypotheses about study objects of interest.

Point Null Hypothesis Testing (PNHT) is the most common option in
virtually all applied disciplines.
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Statistical Hypothesis Testing

Basic recipe of PNHT:

(1) Identify parameter of interest.

(2) Define null hypothesis, H0, of no effect.

(3) Define a test statistic T (a function of the data) such that the larger
T is, the less consistent our data are with H0.

(4) Collect data and then compute test statistic: tobs .

(5) Compute p-value = Prp|T | ě tobs | H0q; if p-value small enough, then
conclude data are inconsistent with H0.

Example:

(1) Difference in mean response between treatment groups X and Y

(2) H0 : µX “ µY

(3) T “ standardized difference in sample means

(4) Collect data; compute tobs “ p sX ´ sY q{SE

(5) Calculating p-value requires knowing distribution of T given H0....
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A Closer Look at P-values

Under H0, our test statistic follows some distribution (plotted).
The p-value is the area under the test statistic’s PDF (or PMF) that
is more extreme than the observed test statisic from the sample.
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A Closer Look at P-values

Formally, we define

p-value “ Prptest stat. as or more extreme than observed | H0 trueq

“ PrpT ě tobs | H0q, usually.

But think about this: the evidence that we observe is captured in the
value of tobs .

The hypothesis we want to make a decision about is H0.

Think about the Sally Clark case: we would typically evaluate
evidence for a hypothesis as PrpH0 | tobsq.

But this is a very different conditional probability than what a p-value
is!
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A Closer Look at P-values

Formally, we define

p-value “ PrpT ě tobs | H0q, usually.

Interpretation: the p-value is the probability of observing a test
statistic as or more extreme than the one observed for our sample,
given that the null hypothesis is true.
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A Closer Look at P-values

Formally, we define

p-value “ PrpT ě tobs | H0q, usually.

Interpretation: the p-value is the probability of observing a test
statistic as or more extreme than the one observed for our sample,
given that the null hypothesis is true.

So a big p-value means the observed test statistic is “typical” under
H0. Therefore, the data are consistent with H0.

A small p-value means the observed test statistic is not “typical”
under H0. Therefore, the data are inconsistent with H0.
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A Closer Look at P-values

Formally, we define

p-value “ PrpT ě tobs | H0q, usually.

Recall definition of conditional probability:

PrpT ě tobs | H0 trueq “
PrpT ě tobs , and H0 trueq

PrpH0 trueq
.

With this in mind, how could the p-value be small?
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