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Nonparametric procedures

Analyzing categorical response data:

Chi-squared tests

Fisher’s exact test

Sign and McNemar tests (paired data)

Analyzing continuous or categorical response data:

Mann-Whitney and Wilcoxon tests

Kruskal-Wallis nonparametric one-way “ANOVA”

Friedman test (nonparametric RM-ANOVA)

Permutation tests
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Nonparametric Statistics

So far, all statistical tests that we have considered (e.g. t-tests,
F-tests, ANOVAs) have been examples of parametric procedures. A
parametric test is one that makes a distributional assumption about
the data in some way.

t-tests assume data are normally distributed.

F-tests assume data are normally distributed.

Traditional ANOVAs (and regressions) assume that residuals are
normally distributed.

In contrast, a nonparametric procedure does not make any
distributional assumptions about the data.
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When to use nonparametric procedures

Consider using nonparametric procedures in the following contexts:

When you are worried about severe violations of assumptions of
robust parametric procedures (e.g. t-tests, ordinary ANOVA).

When you are worried about mild violations of assumptions of
sensitive parametric procedures (e.g. RM-ANOVA).

When you have only categorical response data (e.g. voting data).

When you have outliers in your data (robust procedures may also be
available).

When you have too little data to reasonably check assumptions of
parametric procedures (remember: checking those assumptions
requires enough data in *all* groups in order to have enough power to
detect violations).
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Chi-squared Tests

Chi-squared (χ2) tests are often used to test for the presence of
relationships between categorical variables.

More specifically, chi-squared tests always ask if the probability
distribution of a categorical variable is the same across the levels of
another categorical variable.

Put another way, chi-squared tests are used to test if the observed
sample proportions of a categorical response variable are similiar
across different groups/treatments.
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Chi-squared Tests: example 4

Suppose we would like to test if patient survival is independent of the
type of drug used in treatment. Here, we have data on 31 patients
taking Drug A, and 59 patients taking Drug B. After 5 years, we have
the following counts:

Drug A Drug B

Death 14 22

Survival 17 37

Here, testing independence amounts to testing if the likelihood of
survival (or death) is the same for both drugs. Thus, our particular
null hypothesis is:

H0 : PrpSurvival | DrugAq “ PrpSurvival | DrugBq
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Chi-squared Tests: example 4

Here, we find no evidence against the null hypothesis. Note the
Fisher’s exact test statistic at the bottom that seems to be
corroborating the result of the χ2 test.
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Fisher’s exact test

Fisher’s exact test is a truly nonparametric alternative (i.e. assumes
no asymptotic parametric relationships) to the χ2 test.

It (or a more general version) can be applied in all the situations
previously discussed, though Jamovi will only allow for easy
implementation in the 2ˆ2 contingency table case (as in Ex. 4).

Unlike the χ2 test, Fisher’s exact test is valid (and should be used)
when:

Total sample sizes are insufficient to apply a χ2 test.

Observed or expected cell counts are too small. In particular, if any cell
counts are as small as 0 or 1, and usually when any cell counts are less
than 5.
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Fisher’s exact test rationale

For simplicity, we will describe the procedure for the case of 2ˆ 2
count data as in Example 4.

Suppose we have the following 2ˆ 2 contingency table:

X “ 1 X “ 2 total

response 1 a b a` b
response 2 c d c ` d

total a` c b ` d n “ a` b ` c ` d

We hypothesize that X should not affect the response variable, call it
Y . That is, we hypothesize

H0 : PrpY “ 1 | X “ 1q “ PrpY “ 1 | X “ 2q
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Fisher’s exact test rationale

There is an easy way to calculate just how likely these observed data
are, given the null hypothesis and the fixed row and column totals. In
our case, the probability of observing our data is given by

Prpdataq “

`

a`b
a

˘`

c`d
c

˘

`

n
a`c

˘ ,

where
`

α
β

˘

is a binomial coefficient, or choose function, defined as

ˆ

α

β

˙

:“
α!

β!pα´ βq!
,

where α! “ α ¨ pα´ 1q ¨ pα´ 2q ¨ ¨ ¨ 2 ¨ 1.

The quantity
`

α
β

˘

is the number of unique ways to select β objects

from a pool of α objects; e.g.
`

4
2

˘

“ 6 is the number of ways to select
2 people from a group of 4 total people.
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Fisher’s exact test rationale

For the Fisher’s exact test, our test statistic are the data themselves.
Thus, to calculate a p-value, we need to calculate the probability of
observing any 2ˆ 2 contingency table as or more extreme than the
one we observed (i.e. which tables are more unbalanced than the one
we observed).
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Fisher’s exact test rationale

For example, if our data are:

X “ 1 X “ 2 total

response 1 1 10 11
response 2 9 13 22

total 10 23 33

then there is only one 2ˆ 2 table more extreme (i.e. more unbalanced) as
the one for our data:

X “ 1 X “ 2 total

response 1 0 10 11
response 2 10 13 22

total 10 23 33

Thus, our p-value for the above data (the test statistic) would just be the
sum of the probabilities of observing each of these two tables, using the
formula from the previous slide.
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Return to example 4, Fisher’s exact test

Suppose we would like to test if patient survival is independent of the
type of drug used in treatment. Here, we have data on 31 patients
taking Drug A, and 59 patients taking Drug B. After 5 years, we have
the following counts:

Drug A Drug B

Death 14 22

Survival 17 37

Here, testing independence amounts to testing if the likelihood of
survival (or death) is the same for both drugs. Thus, our particular
null hypothesis is:

H0 : PrpSurvival | DrugAq “ PrpSurvival | DrugBq
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Return to example 4, Fisher’s exact test

Here, we find no evidence against the null hypothesis using Fisher’s
exact test.
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Fisher’s exact test vs. chi-squared tests

A reminder:

Both tests can be used to test for the presence of relationships
between categorical variables.

Both tests assume all observations are independent (won’t work for
paired data, though analogues do exist).

χ2 tests rely on asymptotics; i.e. they require sufficient sample sizes,
overall and within each cell of the contingency table.

Fisher’s exact test applies regardless of sample size, overall or
cell-wise.
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What to do with paired or repeated measures data

Since both χ2 and Fisher’s exact tests rely on an assumption of
independence of all data, they do not apply for repeated measures (or
paired) comparisons.

Example: we present 30 people with a choice of two brands of soda
(A or B). Each person tastes both sodas and records their
preference. We would like to determine if there is evidence that one
brand is preferred over the other.

Sign, McNemar’s, or Cochran’s tests

Used when paired data can assume only two possible categories

Used when paired data are nominal (i.e. categories are not ordered)

Friedman’s test

Used when the (ordinal) paired data have more than 2 factor levels.

Also used as a nonparametric analogue to repeated measures ANOVA.
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Tests based on ranks

Chi-squared and Fisher’s exact tests (etc.) allow us to compare a
categorical response variable over different levels of a categorical
explanatory variable.

But their tests of hypotheses consider whether or not sample
proportions are similar. Thus, they are not directly comparable to
t-tests and ANOVAs that test hypotheses about similarity of means.

Moreover, they do not directly propose a model. Thus, unlike
ANOVA, it is unclear how to examine the relationship of a categorical
response variable to multiple categorical explanatory variables.

Instead, there are many methods based on rank statistics that allow
for nonparametric generalizations of the ANOVA (and t-test)
framework.
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The Mann-Whitney (or Mann-Whitney-Wilcoxon or
Wilcoxon rank-sum) test rationale

Suppose we have a random sample of ordinal or continuous
(independent) observations from two groups. Observations from
Group 1: X1, . . . ,Xn, and observations from Group 2: Y1, . . . ,Ym.

Now, we may rank all the n `m observations, from smallest to
largest, assigning an average rank to observations if there are any ties.

Notationally, we let RpXi q denote the rank assigned to Xi , and RpYjq

denote the rank assigned to Yj for each Xi and Yj in our sample.

If the mean of the RpXi q’s are close to the mean of the RpYjq’s, then
the “typical” X value should be close to the “typical” Y value.

We will return to what “typical” means soon.
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The Mann-Whitney test rationale

More precisely, we can test the null hypothesis

H0 : PrpX ą Y q “ PrpX ă Y q,

by considering the natural test statistic

U “
1

n

n
ÿ

i“1

RpXi q

where RpXi q denotes the rank assigned to observation Xi .

Under the null hypothesis, the average of the ranks in the X group
should be very close to the average of the ranks in the Y group; i.e.

Assuming H0 :
1

n

n
ÿ

i“1

RpXi q «
1

m

m
ÿ

j“1

RpYjq
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The Mann-Whitney test rationale

For reasons of mathematical convenience, the actual test statistic
used in the Mann-Whitney test is:

U1 “

n
ÿ

i“1

RpXi q ´
npn ` 1q

2
.

Note that this statistic contains the exact same information as the
more natural test statistic above.

Under the null hypothesis, U1 should be very close to the
complementary test statistic for the other group of observations:

U2 “

m
ÿ

j“1

RpYjq ´
mpm ` 1q

2
.

Note: these U-statistics change slightly if there are ties in the data.

Ed Kroc (UBC) EPSE 592 March 26 & April 2, 2020 20 / 48



The Mann-Whitney test rationale

The Mann-Whitney U-statistic follows a known probability
distribution for which we can calculate probabilities; thus, we can
calculate p-values.

The Mann-Whitney test can give us evidence that two groups of
observations have different “typical” values. But what does “typical”
mean?

Literally, here, the “typical” observation in one group is the mean of
the sample ranks derived from pooling and ranking all the data from
both groups.

In many cases, this typical value can be thought of as the median, or
50th percentile, (a rank statistic in its own right), or at least acting
very much like a median.

However, in general, the mean of the sample ranks can be different
between the two groups while the sample medians are identical.
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The Mann-Whitney test: Example 1

In Jamovi, you can run a Mann-Whitney test by using the standard
‘Independent Samples t-test’ procedure and then selecting the
‘Mann-Whitney’ option.

Notice: no mean difference detected by ordinary or robust t-tests

However, Mann-Whitney indicates evidence of a difference in
“typical” values between the two groups.
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The Mann-Whitney test: Example 1

These data have the following ‘typical’ values:

Group A mean: 3.34, Group A median: 2.60
Group B mean: 4.43, Group B median: 4.45
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The Mann-Whitney test: Example 1

These data have the following ‘typical’ values for the ranks:

Group A mean rank: 6.13
Group B mean rank: 10.88

Remember: MW-test compares the group mean ranks.
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The Mann-Whitney test: Example 2

Now we’ll change a single data point so that the group means
become the same, but the group medians remain different. We can
accomplish this by making the ’outlier’ in the A group more extreme.

Notice: no mean difference detected by ordinary or robust t-tests

However, Mann-Whitney indicates evidence of a difference in
“typical” values between the two groups. Note too that the
Mann-Whitney statistic is identical to the previous one.
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The Mann-Whitney test: Example 2

These data have the following ‘typical’ values (note: medians are the
same as previous example):

Group A mean: 4.50, Group A median: 2.60
Group B mean: 4.43, Group B median: 4.45
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The Mann-Whitney test: Example 2

These data have the following ‘typical’ values for the ranks. Notice
that these are exactly the same as the previous example:

Group A mean rank: 6.13
Group B mean rank: 10.88

Remember: MW-test compares the group mean ranks.
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The Mann-Whitney test: Example 3

Now we’ll change the data again to make the group means and
medians nearly the same.

Notice: no mean difference detected by ordinary or robust t-tests

Now, Mann-Whitney indicates no evidence of a difference in “typical
value” between the two groups.
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The Mann-Whitney test: Example 3

These data have the following ‘typical’ values:

Group A mean: 3.98, Group A median: 3.90
Group B mean: 4.05, Group B median: 4.15
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The Mann-Whitney test: Example 3

These data have the following ‘typical’ values for the ranks.

Group A mean rank: 8.19
Group B mean rank: 8.81

Remember: MW-test compares the group mean ranks.
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The Mann-Whitney test: reporting

The Mann-Whitney U-statistic tests a null hypothesis about the
difference in a probability distribution over groups:

H0 : PrpX ą Y q “ PrpY ą X q

Under this H0, the mean ranks (and the median ranks) should be
about the same between the two groups.

So what effect size should be reported?

Traditionally, people report either the sample medians of the raw data
or the difference in these sample medians along with a MW test.

It is rare to see anyone report sample means or medians of the ranks.

Heuristically, one can think of the Mann-Whitney test as the
nonparametric analogue of the independent samples t-test, although
as we have seen they do not test exactly the same thing (Example 2).
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The Mann-Whitney test: when to use

MW-test can be used when:

comparing typical values of ordinal categorical variables.

comparing typical values (heuristically, the medians) of continuous
variables.

MW-test is more powerful than (traditional or Welch’s) t-tests when:

data are not normally distributed.

data from different groups are distributed differently.

data are heteroskedastic.

data contain outliers.

However, MW-test cannot detect all differences between comparison
groups. [E.g. will not detect unequal variances; use an F -test instead.]
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The Mann-Whitney test: it’s not all about power

The MW-test is much more powerful than the t-test when outliers are
present, but remember: we don’t just run statistical tests to tell us if
there is evidence of an average difference between groups.

In practice, we report and interpret effect sizes; e.g. sample means.
These are the treatment effects on which we then base clinical
decisions.

Means are highly sensitive to outliers. Thus, when outliers are
present, means can be a bad measure of centrality.

Medians (or rank statistics) are not sensitive to outliers, as percentiles
(ranks) do not use information about distances between observations,
only ordering of observations (compare Examples 1 and 2).
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The Mann-Whitney test: it’s not all about power

Consider the following data on two groups (20 data points each).
These are generated from tp2q random variables with
mean=median=0 for Group 1 and mean=median=3 for Group 2.
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The Mann-Whitney test: it’s not all about power

However, the sample mean for Group 1 is -3.8 and the sample mean
for Group 2 is 4.2. These estimates are quite bad, due to the presence
of the outliers (the distributions are “heavy tailed”).
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The Mann-Whitney test: it’s not all about power

The traditional and robust t-tests suggest evidence for a difference in
means. But the raw effect size (i.e. mean difference) is nearly twice
as big as it should be.

Note too that the 95% confidence intervals are way off: [-15.5,-0.4]

However, the comparison of ranks (in this case, same as comparing
medians) is quite accurate: a sample difference of 3 (95% CI of
[-4.2,-1.8]). This is an example of why means should never be
compared when your data contain substantial outliers.
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The Mann-Whitney test: it’s not all about power

The QQ-plot for these data is quite bad:

Note the distinct “shelf” in the plot. This is characteristic of data
that are “heavy tailed”. This is a very bad kind of non-normality.
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The Kruskal-Wallis one-way nonparametric “ANOVA”

The MW-test is the nonparametric analogue to the independent
samples t-test.

But what if we want to compare more than two groups?

The parametric approach would be a one-way ANOVA.

The nonparametric analogue is the Kruskal-Wallis test.

Rationale is same as MW-test (based on ranks).

Implemented in Jamovi under “ANOVA” tab.

Same advantages over parametric one-way ANOVA as MW-test has
over t-tests.

However, cannot be generalized to more complex ANOVA
models. In particular, cannot be directly generalized to two-way
ANOVA, with or without interactions.
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Kruskal-Wallis example

Recall our survey asking students about their current satisfaction with
their academic program: 63 undergrads, 61 Master’s students, and 73
PhD students responding on a 5-point Likert scale.

We used a χ2-test to analyze these ordinal data, and found weak
evidence that academic satisfaction was related to degree program.

We could apply a Kruskal-Wallis test to these same data to see if
there is evidence that the “typical” Likert response is different
between degree programs.
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Kruskal-Wallis example

χ2-test indicates weak evidence against the null hypothesis; i.e.
sample proportions may be different for at least one of the degree
programs.
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Kruskal-Wallis example

Now perform a Kruskal-Wallis test:

Because we find evidence inconsistent with the null, we then ask for
post hoc pairwise comparisons (note: p-values have been adjusted
here to account for multiple comparisons).
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A word of caution: example

While neither the MW-test nor the KW-test require homoskedasticity,
they will also not be able to necessarily detect departures from
homoskedasticity.

This is because we can have groups with the same “typical” values,
but very different variances.

Consider the example comparison on 3 groups below: no evidence
against the null.
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A word of caution: example

Clearly, means and medians nearly identical for all 3 groups, but
variances are quite different.
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The Wilcoxon signed-rank test and the Friedman test

The nonparametric analogue of the paired t-test is the Wilcoxon
signed-rank test.

Rationale is similar to MW-test (based on ranks).

Implemented in Jamovi under “T-tests” tab, then ‘Paired Samples
T-test’, then select the ’Wilcoxon rank’ option.

Same advantages over paired t-tests as MW-test has over unpaired
t-tests.

Can be generalized to handle repeated measures data on more than
two time points; this is called the Friedman test.

However, the Friedman test cannot be generalized to more complex
RM-ANOVA models. In particular, cannot be generalized to handle
between-subjects factors, with or without interactions.

Ed Kroc (UBC) EPSE 592 March 26 & April 2, 2020 44 / 48



Further nonparametric procedures

The previous nonparametric methods based solely on ranks are
mathematically limited to one-way ANOVA-type situations.

However, in practice, this problem can be circumvented by simply
performing multiple one-way nonparametric ANOVAs, and then
adjusting the overall significance level a posteriori (e.g. via
Bonferonni).

This is less efficient than performing a single, n-way ANOVA, but still
effective if you want to use nonparametric methods with more than
one explanatory variable.

There are also more general and flexible nonparametric methods
(theoretically) available for virtually any type of analysis: permutation
tests.

However, permutation tests can be difficult to perform and even
harder to interpret.
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Summary: when to consider nonparametric procedures

When you have only nominal or ordinal response data (e.g. voting
data).

When you are worried about severe violations of assumptions of
robust parametric procedures (e.g. t-tests, ordinary ANOVA of
multimodal data).

When you are worried about mild violations of assumptions of
sensitive parametric procedures (e.g. sphericity of RM-ANOVA).

When you have outliers in your data (robust procedures may also be
available).

When you have too little data to reasonably check assumptions of
parametric procedures (remember: checking those assumptions
requires enough data in *all* groups in order to have enough power to
detect violations).
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Statistical analysis (partial) cheat sheet (also on webpage)

Categorical
ordinal

Continuous

Type of
response

data

Independent

Dependent

Relation
between

sample units Wilcoxon
signed-rank,

Friedman

Mann-Whitney
Kruskal-Wallis

Number of
groups

Differences
in typical
values

Functional
relationships

between variables

Two

More than
two

Relation
between

sample units

Relation
between

sample units

Independent

Dependent

Independent

Dependent

Independent
samples t-test

Mann-Whitney

Wilcoxon
signed-rank

Paired
samples t-test

Regression,
Generalized

Linear Models

Factorial
ANOVAs

Kruskal-Wallis

Friedman test
(within subjects

design only)

Repeated
measures ANOVA

Permutation
tests

Mixed effects
Models (HLMs)

Differences in
probabilities

Type of
question or
hypothesis

Type of
response

data

Categorical
nominal or

ordinal

Continuous

Independent

Dependent

Relation
between

sample units

Chi-squared,
Fisher's exact

Sign,
McNemar

Kolmogorov-Smirnov,
Cramer-von Mises,
Anderson-Darling,

Kaplan-Meier

(adaptable to all)
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Final words

My hope for your three main take-aways from this course:

You are equipped with some common and useful tools for comparing
typical values of a response variable of interest over different
treatment groups and explanatory factors.

You have gained some technical understanding about how these
tools work and how to decide when their application is more or less
appropriate.

You have gained some methodological confidence to critically
evaluate your own work and that of others. Remember: do not ever
let yourself be “math-washed”!

Remember: your job is not to be a statistician; so when in doubt, ask a
statistician! I’m always happy to talk stats or connect you with someone
else who can help.
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