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Last time

Repeated measures ANOVA

ANCOVA

Ed Kroc (UBC) EPSE 592 March 19, 2020 2 / 41



Today

ANCOVA review

Case study: Motl et al. (2015)

Starting nonparametric methods: chi-squared tests
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Analysis of Covariance (ANCOVA)

ANOVA relates a continuous response of interest to a set of
categorical explanatory variables.

Analysis of Covariance (ANCOVA) extends the ANOVA framework to
allow control for continuous explanatory variables as well.

This is NOT the same thing as regression. In particular, ANCOVA
does not allow you to estimate the effect of a continuous explanatory
variable on a continuous response; it only removes the variation
explained by the continuous explanatory variable, thus:

reducing residual error.

allowing better estimates of the categorical marginal and interaction
effects of interest.

In an ANCOVA, the continuous explanatory variable is never of
interest. It is merely a nuisance variable to be eliminated.
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Analysis of Covariance (ANCOVA) rationale

Let Yi be the response of interest for sample unit i . Let Xi be the
covariate (continuous explanatory variable) for sample unit i

First, find the “best fitting” line through the points pXi ,Yi q:
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Analysis of Covariance (ANCOVA) rationale

There are many ways to define “best fitting,” but here we take the
classical definition; i.e. the ordinary least squares (OLS) fitted line
obtained by minimizing the sum of the squared errors.

That is, if we write
Yi “ β0 ` β1Xi ` εi ,

for some random error ε „ Np0, σ2q, we can find numbers pβ0 for β0
and pβ1 for β1 that minimize

n
ÿ

i“1

ε2i “
n

ÿ

i“1

pYi ´ β0 ´ β1Xi q
2

This is a simple calculus exercise and yields the OLS estimators:

pβ0 “ sY ´ pβ1 sX , pβ1 “
SXY
S2
X
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Analysis of Covariance (ANCOVA) rationale

Now, with the “best fitting” (OLS regression) line estimated, we can
plug in the OLS estimators and rearrange the equation:

Yi “
pβ0 ` pβ1Xi ` εi

“ sY ´ pβ1 sX ` pβ1Xi ` εi

“ sY ` pβ1pXi ´
sX q ` εi

Thus,
Yi ´

pβ1pXi ´
sX q “ sY ` εi

Denote the lefthand side of this equation by

Y adj
i :“ Yi ´

pβ1pXi ´
sX q

This is our response of interest, Y , adjusted for the effect of the
covariate X .
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Analysis of Covariance (ANCOVA) rationale

So, we now have a transformed version of Y that we can fit ANOVA
models to. For example, if W is some categorical explanatory factor
of interest for Y , we can now estimate the ANOVA model:

Y adj “ µ` τW ` δ

This will give us information about the effect of W on Y adjusted for
the effect of X .

The classic (and most common) application: estimating the effect of
some intervention Y adjusting for baseline X over groups of W .

Note: we can adjust for multiple covariates by using the same “best
fit” adjustment procedure for each covariate.
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RM-ANOVA vs. ANCOVA

Suppose we have a pre-test and post-test measurement on 21 people
subjected to one of three experimental treatments (a nested design).

Performing a RM-ANOVA, we could address the question of whether
or not the average change in pre and post-test measurement differs
among the three experimental groups.

Or, treating the pre-test measurement as a nuisance variable, we can
perform an ANCOVA to address the question of whether or not the
average post-test measurement, adjusted for baseline differences in
pre-test measurements, differs among the three experimental groups.

ANCOVA quantifies differences of post-test means between groups
(adjusted for baseline); RM-ANOVA quantifies change from pre-test
to post-test between groups.
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Assumptions of ANCOVA

The usual ANOVA assumptions (independence, homoskedasticity,
normality of residuals)

Relationship between response and covariate is linear. (check
plausibility with scatterplots)

All regression slopes between the covariate and the response are equal
across each level of the explanatory factor(s). (check plausibility
with improper ANCOVA and group-wise scatterplots)

In an RM-ANCOVA framework, the regression slopes are also equal
over each repeated measurement (virtually never satisfied in practice).

Independence of the covariate and the other explanatory factors
(often suspect).
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RM-ANCOVA Example (three repeated measures, covariate
does *not* adjust for baseline of response variable)

Recall RM-ANOVA example from last time: we assess 24 students on
their confidence in their math abilities after participating in two
weekend workshops. 8 students have not taken a math course in the
last 5 years, 8 have taken a course within the past 5 years but not
within the last year, and 8 have taken a course in the last year.

Suppose we actually give the students a short math test before they
take any of the workshops. Then their individual math ability
measured by this test is likely correlated with their baseline
confidence. Since this could explain important variation, we could try
to fit an RM-ANCOVA to assess the effect of the workshops on
confidence, while controlling for their baseline math ability.
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RM-ANCOVA Example

Here is the RM-ANOVA output *without* controlling for baseline ability.
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RM-ANCOVA Example

Interaction plot (time vs. group) of RM-ANOVA *without*
controlling for baseline ability.
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RM-ANCOVA Example

RM-ANCOVA output, controlling for baseline ability (very different
results!).

Ed Kroc (UBC) EPSE 592 March 19, 2020 14 / 41



RM-ANCOVA Example

Interaction plot (time vs. group) of RM-ANCOVA, controlling for
baseline ability.

No significant interaction effect present.
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RM-ANCOVA Example

Which analysis is better?

On the one hand, the ANCOVA attempts to control for more
variation in the response of interest.

On the other hand, we have not checked the ANCOVA assumptions.

One major assumption is that the regression “best fit” lines should be
the same across all groups.

But now, since we have repeated measures, we need to make sure
that these “best fit” lines are the same across all groups and across
all time points.
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RM-ANCOVA Example

No major evidence of heterogeneity of regression slopes at time 1.
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RM-ANCOVA Example

Definite evidence of heterogeneity of regression slopes at time 2.
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RM-ANCOVA Example

Definite evidence of heterogeneity of regression slopes at time 3.
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RM-ANCOVA Example

Which analysis is better?

Thus, the RM-ANCOVA should not be trusted.

This type of violation of homogeneity of regression slopes is an
extremely common occurence when trying to run an RM-ANCOVA.

Because of this, it is rarely advisable to perform RM-ANCOVA.

Ed Kroc (UBC) EPSE 592 March 19, 2020 20 / 41



Case Study: Motl et al. (2015)

Case study posted on webpage.
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Nonparametric procedures

Analyzing categorical response data:

Contingency tables

Chi-squared tests

Fisher’s exact test

Sign and McNemar tests

Analyzing continuous or categorical response data:

Mann-Whitney and Wilcoxon tests

Kruskal-Wallis nonparametric one-way ANOVA

Friedman test

Permutation and randomization tests
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Nonparametric Statistics

So far, all statistical tests that we have considered (e.g. t-tests,
F-tests, ANOVAs) have been examples of parametric procedures. A
parametric test is one that makes a distributional assumption about
the data in some way.

t-tests assume data are normally distributed (or use CLT).

F-tests assume data are normally distributed (or use CLT).

Traditional ANOVAs (and regressions) assume that residuals are
normally distributed.

In contrast, a nonparametric procedure does not make any
distributional assumptions about the data.

Next few weeks, we will become familiar with some common and
extremely useful nonparametric procedures.
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When to use nonparametric procedures

Consider using nonparametric procedures in the following contexts:

When you are worried about severe violations of assumptions of
robust parametric procedures (e.g. t-tests, ordinary ANOVA).

When you are worried about mild violations of assumptions of
sensitive parametric procedures (e.g. RM-ANOVA).

When you have only nominal or ordinal response data (e.g. rankings
of preferences, or some would argue Likert responses).

When you have outliers in your data (robust procedures may also be
available).

When you have too little data to reasonably check assumptions of
parametric procedures (remember: checking those assumptions
requires enough data in *all* groups in order to have enough power to
detect violations).
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Chi-squared Tests

Chi-squared (χ2) tests are often used to test for the presence of
relationships between categorical variables. For example:

Testing if multiple (two or more) categorical variables are independent.

Testing goodness-of-fit for a categorical variable; i.e. if a categorical
variable follows a certain distribution.

Testing homogeneity of a categorical variable over all the levels of
another categorical variable.

People often refer to these three tests like they are different from
each other, but all these tests are simple chi-squared tests that use
the exact same math/procedure.

More simply, chi-squared tests always ask if a set of categorical
variables all follow the same probability distribution.
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Chi-squared Tests rationale

Suppose we observe the value of some categorical random variable,
X , for n sample units (people).

Suppose X has L distinct factor levels, encoded as 1, 2, . . . , L, and let
Oi denote the number of people for whom we observe X “ i . Our
data of interest is thus a series of observed counts:

factor levels X “ 1 X “ 2 . . . X “ L

observed counts O1 O2 . . . OL

Now suppose we hypothesize that X should follow a certain
probability distribution. That is, we hypothesize

H0 : PrpX “ 1q “ p1, PrpX “ 2q “ p2, . . . ,PrpX “ Lq “ pL,

for some fixed numbers p1, p2, . . . , pL.
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Chi-squared Tests rationale

To test this hypothesis, we can calculate the expected counts for each
event X “ i for our sample of size n by using the proposed null
distribution:

factor levels X “ 1 X “ 2 . . . X “ L

observed counts O1 O2 . . . OL

expected counts n ¨ p1 n ¨ p2 . . . n ¨ pL

Now we can calculate a test statistic that quantifies the discrepancy
between our observed and expected counts:

T “
L

ÿ

i“1

pOi ´ n ¨ pi q
2

n ¨ pi
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Chi-squared Tests rationale

Under the null hypothesis, this test statistic will asymptotically follow
a chi-squared distribution on L´ 1 degrees of freedom:

T “
L

ÿ

i“1

pOi ´ n ¨ pi q
2

n ¨ pi
„ χ2pL´ 1q as nÑ8

Thus, we can calculate (approximate) p-values by calculating
probabilities under the χ2 curve, a known probabiliity distribution.

This procedure can be immediately generalized to test if a set of two
or more categorical variables all follow the same probability
distribution.
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Chi-squared Tests: assumptions

The variable(s) being tested are categorical (nominal or ordinal)

Test data arise from a simple random sample; i.e. every sample unit
(person) in the study population had an equal chance of being
observed.

Observations are all independent (won’t work for paired data)

Sample size is sufficient for the asymptotics to kick in (much like the
CLT)

Expected cell counts must be large enough. Most often cited advice:
at least 5 in a 2ˆ2 table, and at least 5 in 80% of cells in larger
tables, with no zero expected cell counts.
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Chi-squared Tests: common errors to avoid

You can only perform chi-squared tests on count data. In particular,
you should not perform chi-squared tests:

on percentage or proportion data.

on continuous data that has been arbitrarily discretized.

when your total sample size is less than about 30.

χ2 tests are often referred to as nonparametric, but they still rely on
parametric asymptotics to make sense.
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Chi-squared Tests: common errors to avoid

You should always perform a continuity correction (usually, of the
Yates’ variety) because a χ2 test approximates a categorical
distribution by a continuous one. Easy option to check-off in Jamovi.

Notice: if you calculated the area under the curve between, say, 0 and
3, this would not exactly agree with if you had calculated the total
area of the histogram from 0 to 3. A continuity correction adjusts
(mostly) for this discrepancy.
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Chi-squared Tests: example 1

Suppose we sampled 96 people at UBC about their job preferences.
We classified job type according to the following six categories for the
survey respondents: academic, commercial (for profit), commerical
(not for profit), industrial, government, and other. We observe the
following data:

job types acad. com.(FP) com.(NFP) ind. gov. other

obs. counts 23 29 15 12 10 7

We would like to test the hypothesis that our sample population
shows no preference among the six job types. Thus, our particular
null hypothesis here is:

H0 : p1 “ p2 “ ¨ ¨ ¨ “ p6 “
1

6
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Chi-squared Tests: example 1

In Jamovi, enter the data as follows:

Note that the expected counts are calculated as n ¨ pi for each cell.
For our particular null hypothesis of choice here, these all become:

96 ¨
1

6
“ 16
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Chi-squared Tests: example 1

In Jamovi:

Click on the ‘Frequencies’ tab, then select the ‘Independent Samples
X 2 test of association’ option.

Assign ‘Observed or Expected’ to the ‘Rows’ option; this identifies the
variables to be tested.

Assign ‘Factor levels’ to the ‘Columns’ option; this identifies the
different factor levels of the categorical variables being tested.

Assign ‘Total counts’ to the ‘Counts’ option; this identifies the
observed and expected counts.

Under the ‘Statistics’ menu, select the ‘χ2 continuity correction’
option.
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Chi-squared Tests: example 1

Here, we find weak evidence against the null hypothesis. Thus we find
that the data are inconsistent with the hypothesis that our target
population has no preference among the six job types.

The data are displayed in a contingency table.
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Chi-squared Tests: example 2

Suppose we conduct a survey asking students about their current
satisfaction with their academic program. People respond on a
5-point Likert scale. In total, we survey 63 undergraduates and 61
Master’s students. We would like to see if there is evidence that
undergrads and Master’s students report different levels of job
satisfaction according to our survey.

Thus, we would like to test the hypothesis that the distribution of our
categorical Likert response is the same across both academic levels.
Our particular null hypothesis here is:

H0 : pi pUq “ pi pMq for all 1 ď i ď 5
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Chi-squared Tests: example 2

Here, we find no evidence against the null hypothesis. Thus we find
that the data are consistent with the hypothesis that undergrads and
Master’s students do not report different levels of academic
satisfaction.
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Chi-squared Tests: example 3

Now suppose we survey an additional 73 PhD students about their
current satisfaction with their degree program.

Again, we would like to test the hypothesis that the distribution of our
categorical Likert response is the same across all program types (now
there are three program types). Our particular null hypothesis here is:

H0 : pi pUq “ pi pMq “ pi pPq for all 1 ď i ď 5
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Chi-squared Tests: example 3

Here, we find weak evidence against the null hypothesis. Note that
we do not require equal sample sizes among groups.
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Chi-squared Tests: example 4

Suppose we would like to test if patient survival is independent of the
type of drug used in treatment. Here, we have data on 31 patients
taking Drug A, and 59 patients taking Drug B. After 5 years, we have
the following counts:

Drug A Drug B

Death 14 22

Survival 17 37

Here, testing independence amounts to testing if the likelihood of
survival (or death) is the same for both drugs. Thus, our particular
null hypothesis is:

H0 : PrpSurvival | DrugAq “ PrpSurvival | DrugBq
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Chi-squared Tests: example 4

Here, we find no evidence against the null hypothesis. Note the
Fisher’s exact test statistic at the bottom that seems to be
corroborating the result of the χ2 test. More on this next time.
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